當前位置: 首頁>>代碼示例>>Python>>正文


Python MLP.scores方法代碼示例

本文整理匯總了Python中mlp.MLP.scores方法的典型用法代碼示例。如果您正苦於以下問題:Python MLP.scores方法的具體用法?Python MLP.scores怎麽用?Python MLP.scores使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在mlp.MLP的用法示例。


在下文中一共展示了MLP.scores方法的1個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: main

# 需要導入模塊: from mlp import MLP [as 別名]
# 或者: from mlp.MLP import scores [as 別名]

#.........這裏部分代碼省略.........
            y: valid_set_y[index * batch_size:(index + 1) * batch_size]
        }
    )

    training_accuracy_model = theano.function(
        inputs=[index],
        outputs=classifier.accuracy(y),
        givens={
            x: train_set_x[index * batch_size:(index + 1) * batch_size],
            y: train_set_y[index * batch_size:(index + 1) * batch_size]
        }
    )

    # compiling a Theano function that computes the predictions on the
    # training data
    training_predictions_model = theano.function(
        inputs=[index],
        outputs=classifier.predictions(),
        givens={
            x: train_set_x[index * batch_size:(index + 1) * batch_size],
        }
    )

    validation_predictions_model = theano.function(
        inputs=[index],
        outputs=classifier.predictions(),
        givens={
            x: valid_set_x[index * batch_size:(index + 1) * batch_size],
        }
    )

    # compiling a Theano function that computes the predictions on the
    # training data
    training_scores_model = theano.function(
        inputs=[index],
        outputs=classifier.scores(),
        givens={
            x: train_set_x[index * batch_size:(index + 1) * batch_size],
        }
    )

    validation_scores_model = theano.function(
        inputs=[index],
        outputs=classifier.scores(),
        givens={
            x: valid_set_x[index * batch_size:(index + 1) * batch_size],
        }
    )

    # start-snippet-5
    # compute the gradient of cost with respect to theta (sotred in params)
    # the resulting gradients will be stored in a list gparams
    gparams = [T.grad(cost, param) for param in classifier.params]

    # specify how to update the parameters of the model as a list of
    # (variable, update expression) pairs

    # given two lists of the same length, A = [a1, a2, a3, a4] and
    # B = [b1, b2, b3, b4], zip generates a list C of same size, where each
    # element is a pair formed from the two lists :
    #    C = [(a1, b1), (a2, b2), (a3, b3), (a4, b4)]
    updates = [
        (param, param - learning_rate * gparam)
        for param, gparam in zip(classifier.params, gparams)
    ]
開發者ID:perellonieto,項目名稱:deep_calibration,代碼行數:69,代碼來源:train.py


注:本文中的mlp.MLP.scores方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。