当前位置: 首页>>代码示例 >>用法及示例精选 >>正文


Python PyTorch conv_transpose2d用法及代码示例


本文简要介绍python语言中 torch.nn.functional.conv_transpose2d 的用法。

用法:

torch.nn.functional.conv_transpose2d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1) → Tensor

参数

  • input-形状的输入张量

  • weight-形状过滤器(\text{in\_channels} , \frac{\text{out\_channels}}{\text{groups}} , kH , kW)

  • bias-形状 的可选偏差。默认值:无

  • stride-卷积核的步幅。可以是单个数字或元组 (sH, sW) 。默认值:1

  • padding-dilation * (kernel_size - 1) - padding 零填充将添加到输入中每个维度的两侧。可以是单个数字或元组 (padH, padW) 。默认值:0

  • output_padding-添加到输出形状中每个维度的一侧的附加大小。可以是单个数字或元组 (out_padH, out_padW) 。默认值:0

  • groups-将输入分成组, 应该可以被组数整除。默认值:1

  • dilation-内核元素之间的间距。可以是单个数字或元组 (dH, dW) 。默认值:1

在由多个输入平面组成的输入图像上应用 2D 转置卷积算子,有时也称为 “deconvolution”。

该运算符支持 TensorFloat32。

有关详细信息和输出形状,请参见 ConvTranspose2d

注意

在某些情况下,当在 CUDA 设备上给定张量并使用 CuDNN 时,此运算符可能会选择非确定性算法来提高性能。如果这是不可取的,您可以尝试通过设置 torch.backends.cudnn.deterministic = True 来使操作具有确定性(可能以性能为代价)。有关详细信息,请参阅重现性。

例子:

>>> # With square kernels and equal stride
>>> inputs = torch.randn(1, 4, 5, 5)
>>> weights = torch.randn(4, 8, 3, 3)
>>> F.conv_transpose2d(inputs, weights, padding=1)

相关用法


注:本文由纯净天空筛选整理自pytorch.org大神的英文原创作品 torch.nn.functional.conv_transpose2d。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。