用法:
class cuspatial.GeoArrowBuffers(data: typing.Union[dict, cuspatial.geometry.geoarrowbuffers.T], data_locale: object = <module 'cudf' from '/opt/conda/envs/rapids/lib/python3.9/site-packages/cudf/__init__.py'>)
基础:
object
GPU GeoArrowBuffers 对象。
- data:一个 dict 或一个 GeoArrowBuffers 对象。
- The GeoArrow format specifies a tabular data format for geometry:
- information. Supported types include `Point`, `MultiPoint`, `LineString`,:
- `MultiLineString`, `Polygon`, and `MultiPolygon`. In order to store:
- these coordinate types in a strictly tabular fashion, columns are:
- created for Points, MultiPoints, LineStrings, and Polygons.:
- MultiLines and MultiPolygons are stored in the same data structure:
- as LineStrings and Polygons. GeoArrowBuffers are constructed from a dict:
- of host buffers with accepted keys:
- * points_xy:
- * points_z:
- * multipoints_xy:
- * multipoints_z:
- * multipoints_offsets:
- * lines_xy:
- * lines_z:
- * lines_offsets:
- * mlines:
- * polygons_xy:
- * polygons_z:
- * polygons_polygons:
- * polygons_rings:
- * mpolygons:
- There are no correlations in length between any of the above columns.:
- Accepted host buffer object types include python list and any type that:
- implements numpy’s `__array__interface__` protocol.:
- GeoArrow Format:
- GeoArrow format packs complex geometry types into 14 single-column Arrow:
- tables. This description is included for better understanding GeoArrow:
- format. Interacting with the GeoArrowBuffers is only required if you want:
- to convert cudf data to GeoPandas objects without starting from GeoPandas.:
- The points geometry is the simplest: N points are stored in a length 2*N:
- buffer with interleaved x,y coordinates. An optional z buffer of length N:
- can be used.:
- The multipoints geometry is the second simplest - identical to points,:
- with the addition of a multipoints_offsets buffer. The offsets buffer:
- stores N+1 indexes. The first multipoint is specified by 0, which is always:
- stored in offsets[0], and offsets[1], which is the length in points of:
- the first multipoint geometry. Subsequent multipoints are the prefix-sum of:
- the lengths of previous multipoints.:
- Consider::
- 缓冲区 = GeoArrowBuffers({
- “multipoints_xy”:
[0, 0, 0, 1, 0, 2, 1, 0, 1, 1, 1, 2, 2, 0, 2, 1, 2, 2],
- “multipoints_offsets”:
[0, 6, 12, 18]
})
- which encodes the following GeoPandas Series::
- 系列 = geopandas.Series([
多点((0, 0), (0, 1), (0, 2)), 多点((1, 0), (1, 1), (1, 2)), 多点((2, 0), (2, 1), (2, 2)),
])
- LineString geometry is more complicated than multipoints because the:
- format allows for the use of LineStrings and MultiLineStrings in the same:
- buffer, via the mlines key::
- 缓冲区 = GeoArrowBuffers({
- “lines_xy”:
- [0, 0, 0, 1, 0, 2, 1, 0, 1, 1, 1, 2, 2, 0, 2, 1, 2, 2, 3, 0,
3, 1, 3, 2, 4, 0, 4, 1, 4, 2],
- “lines_offsets”:
[0, 6, 12, 18, 24, 30],
- “mlines”:
[1, 3]
})
- Which encodes a GeoPandas Series::
- 系列 = geopandas.Series([
LineString((0, 0), (0, 1), (0, 2)), MultiLineString([(1, 0), (1, 1), (1, 2)],
[(2, 0), (2, 1), (2, 2)],
) LineString((3, 0), (3, 1), (3, 2)), LineString((4, 0), (4, 1), (4, 2)),
])
- Polygon geometry includes `mpolygons` for MultiPolygons similar to the:
- LineString geometry. Polygons are encoded using the same format as:
- Shapefiles, with left-wound external rings and right-wound internal rings.:
- An exact example of `GeoArrowBuffers` to `geopandas.Series` is left to the:
- reader as an exercise. Convert any GeoPandas `Series` or `DataFrame` with:
- `cuspatial.from_geopandas(geopandas_object)`.:
参数:
注意:
传统的尖顶算法依赖于分开的 x 和 y 列。使用
.x
和.y
属性访问它们。例子:
GeoArrowBuffers 接受一个字典作为参数。有效键在上面的项目符号列表中。有效值是实现 numpy 的
__array_interface__
的任何数据类型。支持四种基本几何类型中的任何一种或全部作为参数:buffers = GeoArrowBuffers({ "points_xy": [0, 0, 0, 1, 0, 2, 1, 0, 1, 1, 1, 2, 2, 0, 2, 1, 2, 2], "multipoints_xy": [0, 0, 0, 1, 0, 2, 1, 0, 1, 1, 1, 2, 2, 0, 2, 1, 2, 2], "multipoints_offsets": [0, 6, 12, 18] "lines_xy": [0, 0, 0, 1, 0, 2, 1, 0, 1, 1, 1, 2, 2, 0, 2, 1, 2, 2, 3, 0, 3, 1, 3, 2, 4, 0, 4, 1, 4, 2], "lines_offsets": [0, 6, 12, 18, 24, 30], "mlines": [1, 3] "polygons_xy": [0, 0, 0, 1, 0, 2, 1, 0, 1, 1, 1, 2, 2, 0, 2, 1, 2, 2, 3, 0, 3, 1, 3, 2, 4, 0, 4, 1, 4, 2], "polygons_polygons": [0, 1, 2], "polygons_rings": [0, 1, 2], "mpolygons": [1, 3], })
或另一个 GeoArrowBuffers:
buffers2 = GeoArrowBuffers(buffers)
lines
包含坐标列、偏移列和 mlines 列。
multipoints
与添加了偏移量列的点列类似。
points
一个简单的数字列。
polygons
包含坐标列、指定每个多边形的开始和结束的环列、指定每个多边形的开始或外部环和结束环的多边形列。
属性:
相关用法
- Python cuspatial.GeoSeries用法及代码示例
- Python cuspatial.GeoDataFrame.groupby用法及代码示例
- Python cuspatial.CubicSpline用法及代码示例
- Python cuspatial.quadtree_on_points用法及代码示例
- Python cuspatial.trajectory_bounding_boxes用法及代码示例
- Python cuspatial.derive_trajectories用法及代码示例
- Python cuspatial.directed_hausdorff_distance用法及代码示例
- Python cuspatial.trajectory_distances_and_speeds用法及代码示例
- Python cuspatial.point_in_polygon用法及代码示例
- Python cusignal.windows.windows.hann用法及代码示例
- Python cusignal.windows.windows.general_gaussian用法及代码示例
- Python cusignal.waveforms.waveforms.chirp用法及代码示例
- Python cusignal.windows.windows.gaussian用法及代码示例
- Python cusignal.windows.windows.hamming用法及代码示例
- Python cusignal.windows.windows.get_window用法及代码示例
- Python cusignal.waveforms.waveforms.gausspulse用法及代码示例
- Python cusignal.peak_finding.peak_finding.argrelmin用法及代码示例
- Python cusignal.windows.windows.bartlett用法及代码示例
- Python cusignal.spectral_analysis.spectral.welch用法及代码示例
- Python cusignal.windows.windows.chebwin用法及代码示例
注:本文由纯净天空筛选整理自rapids.ai大神的英文原创作品 cuspatial.GeoArrowBuffers。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。