当前位置: 首页>>代码示例>>Python>>正文


Python PCA.score方法代码示例

本文整理汇总了Python中sklearn.decomposition.PCA.score方法的典型用法代码示例。如果您正苦于以下问题:Python PCA.score方法的具体用法?Python PCA.score怎么用?Python PCA.score使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.decomposition.PCA的用法示例。


在下文中一共展示了PCA.score方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: pca

# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import score [as 别名]
 def pca(data,components):
     
     from sklearn.decomposition import PCA
     global pca_transf
     pca = PCA(n_components=components)
     pca.fit(data)
     pca_transf = pca.fit_transform(data)
     print(pca.explained_variance_ratio_) 
     pca.score(data)
开发者ID:cedricoeldorf,项目名称:Binary_classification,代码行数:11,代码来源:preprocessing.py

示例2: test_pca_score2

# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import score [as 别名]
def test_pca_score2():
    """Test that probabilistic PCA correctly separated different datasets"""
    n, p = 100, 3
    rng = np.random.RandomState(0)
    X = rng.randn(n, p) * 0.1 + np.array([3, 4, 5])
    pca = PCA(n_components=2)
    pca.fit(X)
    ll1 = pca.score(X)
    ll2 = pca.score(rng.randn(n, p) * 0.2 + np.array([3, 4, 5]))
    assert_greater(ll1, ll2)

    # Test that it gives the same scores if whiten=True
    pca = PCA(n_components=2, whiten=True)
    pca.fit(X)
    ll2 = pca.score(X)
    assert_almost_equal(ll1, ll2)
开发者ID:Garrett-R,项目名称:scikit-learn,代码行数:18,代码来源:test_pca.py

示例3: test_pca_score2

# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import score [as 别名]
def test_pca_score2():
    # Test that probabilistic PCA correctly separated different datasets
    n, p = 100, 3
    rng = np.random.RandomState(0)
    X = rng.randn(n, p) * .1 + np.array([3, 4, 5])
    for solver in solver_list:
        pca = PCA(n_components=2, svd_solver=solver)
        pca.fit(X)
        ll1 = pca.score(X)
        ll2 = pca.score(rng.randn(n, p) * .2 + np.array([3, 4, 5]))
        assert_greater(ll1, ll2)

        # Test that it gives different scores if whiten=True
        pca = PCA(n_components=2, whiten=True, svd_solver=solver)
        pca.fit(X)
        ll2 = pca.score(X)
        assert ll1 > ll2
开发者ID:amueller,项目名称:scikit-learn,代码行数:19,代码来源:test_pca.py

示例4: test_pca_score

# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import score [as 别名]
def test_pca_score():
    """Test that probabilistic PCA scoring yields a reasonable score"""
    n, p = 1000, 3
    rng = np.random.RandomState(0)
    X = rng.randn(n, p) * 0.1 + np.array([3, 4, 5])
    pca = PCA(n_components=2)
    pca.fit(X)
    ll1 = pca.score(X)
    h = -0.5 * np.log(2 * np.pi * np.exp(1) * 0.1 ** 2) * p
    np.testing.assert_almost_equal(ll1 / h, 1, 0)
开发者ID:Garrett-R,项目名称:scikit-learn,代码行数:12,代码来源:test_pca.py

示例5: test_pca_score3

# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import score [as 别名]
def test_pca_score3():
    """Check that probabilistic PCA selects the right model"""
    n, p = 200, 3
    rng = np.random.RandomState(0)
    Xl = rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5]) + np.array([1, 0, 7])
    Xt = rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5]) + np.array([1, 0, 7])
    ll = np.zeros(p)
    for k in range(p):
        pca = PCA(n_components=k)
        pca.fit(Xl)
        ll[k] = pca.score(Xt)

    assert_true(ll.argmax() == 1)
开发者ID:Garrett-R,项目名称:scikit-learn,代码行数:15,代码来源:test_pca.py

示例6: test_pca_score3

# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import score [as 别名]
def test_pca_score3():
    # Check that probabilistic PCA selects the right model
    n, p = 200, 3
    rng = np.random.RandomState(0)
    Xl = (rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5]) +
          np.array([1, 0, 7]))
    Xt = (rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5]) +
          np.array([1, 0, 7]))
    ll = np.zeros(p)
    for k in range(p):
        pca = PCA(n_components=k, svd_solver='full')
        pca.fit(Xl)
        ll[k] = pca.score(Xt)

    assert ll.argmax() == 1
开发者ID:amueller,项目名称:scikit-learn,代码行数:17,代码来源:test_pca.py

示例7: save_resampled_transformation_single

# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import score [as 别名]
def save_resampled_transformation_single(file, resample_dim=[4, 4, 4]):
    nii_obj = nib.load(file)   # standard_mask=True is default
    resamp_nii = make_resampled_transformation(nii_obj, resample_dim)
    image_data = resamp_nii.get_data()
    image_vector = image_data.flatten()
    image_vector = np.nan_to_num(image_vector)
    image_vector = image_vector.reshape(image_vector.shape[0], 1)


    print image_data.shape
    # do I have to create a 116380*4 array to do the PCA?
    # 116380 = image_data.shape[0] * image_data.shape[1]*image_data.shape[2]
    # 4 = (x,y,z,v) where v is the value
    size = image_data.shape
    mesh = np.array(np.meshgrid(np.arange(size[0]),np.arange(size[1]),np.arange(size[2]))).T.reshape(-1,3)
    image_spatial_data = np.concatenate((mesh, image_vector),axis=1)

    pca = PCA(n_components=3)
    pca.fit_transform(image_spatial_data)
    a = pca.score(image_vector)


    # np.save(f, image_vector)
    return
开发者ID:erramuzpe,项目名称:neurovault_benchmark,代码行数:26,代码来源:feature_extraction.py

示例8: SelectivePCA

# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import score [as 别名]

#.........这里部分代码省略.........

        # fails thru if names don't exist:
        self.pca_ = PCA(
            n_components=self.n_components,
            whiten=self.whiten).fit(X[cols].as_matrix())

        return self

    def transform(self, X):
        """Transform a test matrix given the already-fit transformer.

        Parameters
        ----------

        X : Pandas ``DataFrame``, shape=(n_samples, n_features)
            The Pandas frame to transform. The operation will
            be applied to a copy of the input data, and the result
            will be returned.


        Returns
        -------

        X : Pandas ``DataFrame``
            The operation is applied to a copy of ``X``,
            and the result set is returned.
        """
        check_is_fitted(self, 'pca_')
        # check on state of X and cols
        X, _ = validate_is_pd(X, self.cols)
        cols = _cols_if_none(X, self.cols)

        other_nms = [nm for nm in X.columns if nm not in cols]
        transform = self.pca_.transform(X[cols].as_matrix())

        # do weighting if necessary
        if self.weight:
            # get the weight vals
            weights = self.pca_.explained_variance_ratio_
            weights -= np.median(weights)
            weights += 1

            # now add to the transformed features
            transform *= weights

        left = pd.DataFrame.from_records(data=transform,
                                         columns=[('PC%i' % (i + 1)) for i in range(transform.shape[1])])

        # concat if needed
        x = pd.concat([left, X[other_nms]], axis=1) if other_nms else left
        return x if self.as_df else x.as_matrix()

    @overrides(_BaseSelectiveDecomposer)
    def get_decomposition(self):
        """Overridden from the :class:``skutil.decomposition.decompose._BaseSelectiveDecomposer`` class,
        this method returns the internal decomposition class: 
        ``sklearn.decomposition.PCA``

        Returns
        -------
        self.pca_ : ``sklearn.decomposition.PCA``
            The fit internal decomposition class
        """
        return self.pca_ if hasattr(self, 'pca_') else None

    def score(self, X, y=None):
        """Return the average log-likelihood of all samples.
        This calls sklearn.decomposition.PCA's score method
        on the specified columns [1].

        Parameters
        ----------

        X: Pandas ``DataFrame``, shape=(n_samples, n_features)
            The data to score.

        y: None
            Passthrough for pipeline/gridsearch


        Returns
        -------

        ll: float
            Average log-likelihood of the samples under the fit
            PCA model (`self.pca_`)


        References
        ----------

        .. [1] Bishop, C.  "Pattern Recognition and Machine Learning"
               12.2.1 p. 574 http://www.miketipping.com/papers/met-mppca.pdf
        """
        check_is_fitted(self, 'pca_')
        X, _ = validate_is_pd(X, self.cols)
        cols = X.columns if not self.cols else self.cols

        ll = self.pca_.score(X[cols].as_matrix(), _as_numpy(y))
        return ll
开发者ID:tgsmith61591,项目名称:skutil,代码行数:104,代码来源:decompose.py

示例9: range

# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import score [as 别名]
    for x in range(2048, 3072):
        bluecount += imgdt[x]
    average_rgb.append((redcount/3072, greencount/3072, bluecount/3072))
    #print redcount/3072, greencount/3072, bluecount/3072,label_names[lind]
    X_test.append([redcount/3072, greencount/3072, bluecount/3072,max(imgdt[:1024]),min(imgdt[:1024]),max(imgdt[1024:2048]),min(imgdt[1024:2048]),max(imgdt[2048:3072]),min(imgdt[2048:3072])])
    #y_test.append(label_names[lind])
    #X_test ,y_test


# In[10]:

#computing the principle components
X = np.array(X_train)
pca = PCA(n_components=9)
abc = pca.fit_transform(X)
pca1 = pca.score(X)
print "PCA of Feature Vectors"
print abc,pca1


# In[11]:

#plotting the principle components
x1 = []
y1 = []
z1 = []
for item in abc:
 x1.append(item[0])
 y1.append(item[1])
 z1.append(item[2])
fig1 = plt.figure() 
开发者ID:srikar76,项目名称:Big_Data_Assignment_2,代码行数:33,代码来源:feature_engineering_2.py

示例10: PCA

# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import score [as 别名]
X = iris.data
Y = iris.target
names = iris.target_names


from sklearn.decomposition import PCA

pca = PCA(n_components=2)

pca.fit(X)

tran_x = pca.transform(X)

print "PCA Precision:", pca.get_precision() 
print "PCA Explained Variance Ratio:", pca.explained_variance_ratio_
print "PCA Score:", pca.score(X)

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

lda = LinearDiscriminantAnalysis(n_components=2)

lda.fit(X, Y)

tran_x = lda.transform(X)

print "LDA Slope:", lda.coef_
print "LDA Intercept:", lda.intercept_



开发者ID:DannyGotTea,项目名称:MachineLearningAlgorithms,代码行数:29,代码来源:PrincipalComponentAnalysis.py

示例11: range

# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import score [as 别名]
    rng = np.random.RandomState(0)
    Xl = (rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5])
          + np.array([1, 0, 7]))
    Xt = (rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5])
          + np.array([1, 0, 7]))
    ll = np.zeros(p)
    for k in range(p):
        pca = PCA(n_components=k)
        pca.fit(Xl)
        ll[k] = pca.score(Xt)

    assert_true(ll.argmax() == 1)
p) * .1 + np.array([3, 4, 5])
    pca = PCA(n_components=2)
    pca.fit(X)
    ll1 = pca.score(X)
    ll2 = pca.score(rng.randn(n, p) * .2 + np.array([3, 4, 5]))
    assert_greater(ll1, ll2)

    # Test that it gives the same scores if whiten=True
    pca = PCA(n_components=2, whiten=True)
    pca.fit(X)
    ll2 = pca.score(X)
    assert_almost_equal(ll1, ll2)


def test_pca_score3():
    # Check that probabilistic PCA selects the right model
    n, p = 200, 3
    rng = np.random.RandomState(0)
    Xl = (rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5])
开发者ID:rsteca,项目名称:scikit-learn,代码行数:33,代码来源:test_pca.py

示例12: TfidfVectorizer

# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import score [as 别名]
        card = card.split(' ')
        cardT = []
        for w in card:
            if w != ''  and w != '\r\n':
                cardT.append(w)
        cards.append(' '.join(cardT))
        
vectorizer = TfidfVectorizer(min_df = 5,max_df = 0.5,ngram_range = (1,2))
X = vectorizer.fit_transform(cards).toarray()

n_components = np.arange(50,80, 5)  # options for n_components
print X.shape

fa = PCA()

fa_scores = []
for n in n_components:
    print n
    
    sys.stdout.flush()
    fa.n_components = n
    fa.fit(X)
    fa_scores.append(fa.score(X))
    print '\t',fa_scores[-1]
    

fa.n_components = n_components[np.argmax(fa_scores)]
Y = fa.fit_transform(X)

for name,ii in zip(cardnames,range(len(Y))):
    print name+'@'+ '@'.join(str(v) for v in list(Y[ii,:]))
开发者ID:adamsumm,项目名称:MtG-SetGen,代码行数:33,代码来源:tfidf.py

示例13: KNeighborsClassifier

# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import score [as 别名]
model = KNeighborsClassifier(n_neighbors=12, weights='distance')
model.fit(data_train, label_train)
#
# INFO: Be sure to always keep the domain of the problem in mind! It's
# WAY more important to errantly classify a benign tumor as malignant,
# and have it removed, than to incorrectly leave a malignant tumor, believing
# it to be benign, and then having the patient progress in cancer. Since the UDF
# weights don't give you any class information, the only way to introduce this
# data into SKLearn's KNN Classifier is by "baking" it into your data. For
# example, randomly reducing the ratio of benign samples compared to malignant
# samples from the training set.



#
# TODO: Calculate + Print the accuracy of the testing set
#
# .. your code here ..

print('==========\nScore\n')
print(model.score(data_test, label_test))

print('==========')



plotDecisionBoundary(model, data_test, label_test)


开发者ID:griblik,项目名称:scratch,代码行数:29,代码来源:assignment7.py


注:本文中的sklearn.decomposition.PCA.score方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。