当前位置: 首页>>代码示例>>Python>>正文


Python PCA.fit_ttransform方法代码示例

本文整理汇总了Python中sklearn.decomposition.PCA.fit_ttransform方法的典型用法代码示例。如果您正苦于以下问题:Python PCA.fit_ttransform方法的具体用法?Python PCA.fit_ttransform怎么用?Python PCA.fit_ttransform使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.decomposition.PCA的用法示例。


在下文中一共展示了PCA.fit_ttransform方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: plot_kmeans_interactive

# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import fit_ttransform [as 别名]
def plot_kmeans_interactive(min_clusters=1, max_clusters=6):
    from IPython.html.widgets import interact
    from sklearn.metrics.pairwise import euclidean_distances
    from sklearn.datasets.samples_generator import make_blobs

    with warnings.catch_warnings():
        #warnings.filterwarnings('ignore')

        from sklearn.datasets import load_iris
        from sklearn.decomposition import PCA

        iris = load_iris()
        X, y = iris.data, iris.target
        pca = PCA(n_components = 0.95) # keep 95% of variance
        X = pca.fit_ttransform(X)
        #X = X[:, 1:3]


        def _kmeans_step(frame=0, n_clusters=3):
            rng = np.random.RandomState(2)
            labels = np.zeros(X.shape[0])
            centers = rng.randn(n_clusters, 2)

            nsteps = frame // 3

            for i in range(nsteps + 1):
                old_centers = centers
                if i < nsteps or frame % 3 > 0:
                    dist = euclidean_distances(X, centers)
                    labels = dist.argmin(1)

                if i < nsteps or frame % 3 > 1:
                    centers = np.array([X[labels == j].mean(0)
                                        for j in range(n_clusters)])
                    nans = np.isnan(centers)
                    centers[nans] = old_centers[nans]


            # plot the data and cluster centers
            plt.scatter(X[:, 0], X[:, 1], c=labels, s=50, cmap='rainbow',
                        vmin=0, vmax=n_clusters - 1);
            plt.scatter(old_centers[:, 0], old_centers[:, 1], marker='o',
                        c=np.arange(n_clusters),
                        s=200, cmap='rainbow')
            plt.scatter(old_centers[:, 0], old_centers[:, 1], marker='o',
                        c='black', s=50)

            # plot new centers if third frame
            if frame % 3 == 2:
                for i in range(n_clusters):
                    plt.annotate('', centers[i], old_centers[i], 
                                 arrowprops=dict(arrowstyle='->', linewidth=1))
                plt.scatter(centers[:, 0], centers[:, 1], marker='o',
                            c=np.arange(n_clusters),
                            s=200, cmap='rainbow')
                plt.scatter(centers[:, 0], centers[:, 1], marker='o',
                            c='black', s=50)

            plt.xlim(-4, 4)
            plt.ylim(-2, 10)

            if frame % 3 == 1:
                plt.text(3.8, 9.5, "1. Reassign points to nearest centroid",
                         ha='right', va='top', size=14)
            elif frame % 3 == 2:
                plt.text(3.8, 9.5, "2. Update centroids to cluster means",
                         ha='right', va='top', size=14)

    
    return interact(_kmeans_step, frame=[0, 50],
                    n_clusters=[min_clusters, max_clusters])
开发者ID:KTHHCID,项目名称:intro-to-sklearn,代码行数:73,代码来源:figures.py


注:本文中的sklearn.decomposition.PCA.fit_ttransform方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。