本文整理汇总了Python中sklearn.decomposition.PCA.get_covariance方法的典型用法代码示例。如果您正苦于以下问题:Python PCA.get_covariance方法的具体用法?Python PCA.get_covariance怎么用?Python PCA.get_covariance使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.decomposition.PCA
的用法示例。
在下文中一共展示了PCA.get_covariance方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_pca
# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import get_covariance [as 别名]
def test_pca():
"""PCA on dense arrays"""
pca = PCA(n_components=2)
X = iris.data
X_r = pca.fit(X).transform(X)
np.testing.assert_equal(X_r.shape[1], 2)
X_r2 = pca.fit_transform(X)
assert_array_almost_equal(X_r, X_r2)
pca = PCA()
pca.fit(X)
assert_almost_equal(pca.explained_variance_ratio_.sum(), 1.0, 3)
X_r = pca.transform(X)
X_r2 = pca.fit_transform(X)
assert_array_almost_equal(X_r, X_r2)
# Test get_covariance and get_precision with n_components == n_features
# with n_components < n_features and with n_components == 0
for n_components in [0, 2, X.shape[1]]:
pca.n_components = n_components
pca.fit(X)
cov = pca.get_covariance()
precision = pca.get_precision()
assert_array_almost_equal(np.dot(cov, precision), np.eye(X.shape[1]), 12)
示例2: test_pca_randomized_solver
# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import get_covariance [as 别名]
def test_pca_randomized_solver():
# PCA on dense arrays
X = iris.data
# Loop excluding the 0, invalid for randomized
for n_comp in np.arange(1, X.shape[1]):
pca = PCA(n_components=n_comp, svd_solver='randomized', random_state=0)
X_r = pca.fit(X).transform(X)
np.testing.assert_equal(X_r.shape[1], n_comp)
X_r2 = pca.fit_transform(X)
assert_array_almost_equal(X_r, X_r2)
X_r = pca.transform(X)
assert_array_almost_equal(X_r, X_r2)
# Test get_covariance and get_precision
cov = pca.get_covariance()
precision = pca.get_precision()
assert_array_almost_equal(np.dot(cov, precision),
np.eye(X.shape[1]), 12)
pca = PCA(n_components=0, svd_solver='randomized', random_state=0)
assert_raises(ValueError, pca.fit, X)
pca = PCA(n_components=0, svd_solver='randomized', random_state=0)
assert_raises(ValueError, pca.fit, X)
# Check internal state
assert_equal(pca.n_components,
PCA(n_components=0,
svd_solver='randomized', random_state=0).n_components)
assert_equal(pca.svd_solver,
PCA(n_components=0,
svd_solver='randomized', random_state=0).svd_solver)
示例3: test_pca
# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import get_covariance [as 别名]
def test_pca():
# PCA on dense arrays
X = iris.data
for n_comp in np.arange(X.shape[1]):
pca = PCA(n_components=n_comp, svd_solver='full')
X_r = pca.fit(X).transform(X)
np.testing.assert_equal(X_r.shape[1], n_comp)
X_r2 = pca.fit_transform(X)
assert_array_almost_equal(X_r, X_r2)
X_r = pca.transform(X)
X_r2 = pca.fit_transform(X)
assert_array_almost_equal(X_r, X_r2)
# Test get_covariance and get_precision
cov = pca.get_covariance()
precision = pca.get_precision()
assert_array_almost_equal(np.dot(cov, precision),
np.eye(X.shape[1]), 12)
# test explained_variance_ratio_ == 1 with all components
pca = PCA(svd_solver='full')
pca.fit(X)
assert_almost_equal(pca.explained_variance_ratio_.sum(), 1.0, 3)
示例4: gtm_pc_initialization
# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import get_covariance [as 别名]
def gtm_pc_initialization(self):
""" Calculation of weight matrix using principal components
:return: w: Initialized weight matrix
:return: beta: Initial scalar value of the inverse variance common to all components of the mixture
"""
# Calculation of principal components and their explained variance
pca = PCA()
pca.fit(self.centered_input_data)
# Eigenvectors scaled by their respective eigenvalues
[eigenvalues, eigenvector] = np.linalg.eig(pca.get_covariance())
idx = np.argsort(eigenvalues)[::-1]
eigenvalues = eigenvalues[idx]
eigenvector = eigenvector[:, idx]
eigenvector_scaled = np.dot(eigenvector[:, 0:self.z.shape[0]], np.diag(np.sqrt(eigenvalues
[0:self.z.shape[0]])))
# Normalized latent distribution and weight matrix initialization
z_norm = np.dot(np.diag(1/np.std(self.z, axis=1)), self.z - np.dot(np.diag(np.mean(self.z, axis=1)),
np.ones(self.z.shape)))
# eigenvector_scaled[:, 1] = - eigenvector_scaled[:, 1]
lhs = self.fi
rhs = np.dot(np.transpose(z_norm), np.transpose(eigenvector_scaled))
w = np.linalg.lstsq(lhs, rhs)[0]
w[-1, :] = np.mean(self.centered_input_data, 0)
rhs2 = np.linalg.pinv(rhs)
w2 = np.dot(np.transpose(lhs), np.transpose(np.linalg.pinv(rhs)))
# Beta initialization
beta_matrix = np.dot(self.fi, w)
inter_distance = cdist(beta_matrix, beta_matrix, 'sqeuclidean')
np.fill_diagonal(inter_distance, np.inf)
mean_nearest_neighbor = np.mean(np.min(inter_distance))
beta = 2 / mean_nearest_neighbor
if self.z.shape[0] < self.input_data.shape[1]:
beta = min(beta, 1 / pca.explained_variance_[self.z.shape[0]])
return w, beta
示例5: load_data
# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import get_covariance [as 别名]
def load_data():
# load the CSV file as a numpy matrix
dataset = np.loadtxt(csv_filename, delimiter=';', skiprows=1)
# separate the data from the target attributes
X = dataset[:,:11]
# reduce dimension of X with pca
pca = PCA(n_components=2)
pca.fit(X)
print "Matriz de covariancia sin eliminar atributos"
print pca.get_covariance()
X = dataset[:, [0,1,2,3,4,7,8,9,10]]
# reduce dimension of X with pca
pca = PCA(n_components=2)
pca.fit(X)
print "Matriz de covariancia eliminando atributos 5 y 6"
print pca.get_covariance()
X = dataset[:, [1,2,3,4,7,8,9,10]]
# reduce dimension of X with pca
pca = PCA(n_components=2)
pca.fit(X)
print "Matriz de covariancia eliminando atributos 0, 5 y 6"
print pca.get_covariance()
X = pca.transform(X)
y = dataset[:,11]
return X, y
示例6: compute_PCA
# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import get_covariance [as 别名]
def compute_PCA(array):
nimages0, nchannels0, height0, width0 = array.shape
rolled = np.transpose(array, (0, 2, 3, 1))
# transpose from N x channels x height x width to N x height x width x channels
nimages1, height1, width1, nchannels1 = rolled.shape
# check shapes
assert nimages0 == nimages1
assert nchannels0 == nchannels1
assert height0 == height1
assert width0 == width1
# flatten
reshaped = rolled.reshape(nimages1 * height1 * width1, nchannels1)
from sklearn.decomposition import PCA
pca = PCA()
pca.fit(reshaped)
cov = pca.get_covariance()
eigenvalues, eigenvectors = np.linalg.eig(cov)
return eigenvalues, eigenvectors
示例7: StandardScaler
# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import get_covariance [as 别名]
print y.head()
print mushrooms.corr()
# scale the data
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X=scaler.fit_transform(X)
print X
from sklearn.decomposition import PCA
pca = PCA()
pca.fit_transform(X)
covariance=pca.get_covariance()
print covariance, '********************'
explained_variance=pca.explained_variance_
explained_variance
with plt.style.context('dark_background'):
plt.figure(figsize=(6, 4))
plt.bar(range(22), explained_variance, alpha=0.5, align='center',
label='individual explained variance')
plt.ylabel('Explained variance ratio')
plt.xlabel('Principal components')
plt.legend(loc='best')
plt.tight_layout()
示例8: PCA
# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import get_covariance [as 别名]
dataset_input = dataset[:,0:12]
names = np.array(['class1', 'class2', 'class3'])
b = {'data' : dataset_input, 'target' : dataset_output, 'target_names' : names}
X = b['data']
y = b['target']
target_names = b['target_names']
#X = np.array([[-1, -1, 0], [-2, -1, -1], [-3, -2, -2], [1, 1, 1], [2, 1, 0], [3, 2, 1]])
pca = PCA(n_components=10)
X1 = -scale(pca.fit_transform(X))
#print(pca.explained_variance_ratio_)
print 'variance2 '
print pca.get_covariance()
#print X
print 'X1'
print X1
#print X1[0:4,0]
#print X1[0:4,1]
Y = pca.inverse_transform(X1)
plt.scatter(X[:, 0], X[:, 1])
plt.show()
#plt.plot(X, y, 'o')
#plt.plot(x2, y + 0.5, 'o')
示例9: fxData
# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import get_covariance [as 别名]
#.........这里部分代码省略.........
return components, variance
def plotPCA(self, periodicity = 'daily', fxRisk = None, style = 'dark_background'):
components, variance = self.PCAFXAnalysis(periodicity = periodicity, fxRisk = fxRisk)
n = float(len(variance))
title = periodicity + ' PCA '
if fxRisk: title += fxRisk
with plt.style.context((style)):
axes = components.plot(kind = 'barh', legend = False, figsize = [15,n*2.5], subplots = True, layout = [int(np.ceil(n/3)),3], title = title, sharex=False, style = 'winter')#, layout = [np.floor(n**0.5), np.floor(n**0.5)+3])
for axe, v in zip(axes.flatten(),variance.values):
axe.set_title(str(round(v[0]*100, 2)) + '%')
# plt.gcf().autolayout = True
if n <= 3:
top = 0.9
else:
top = 0.95
plt.subplots_adjust(left=None, bottom=None, right=None, top=top, wspace=None, hspace=None)
# plt.tight_layout()
# andrews_curves(components, 1)
def plotCurrencyBasketIndex(self, periodicity = 'daily', fxRisk = None, style = 'dark_background'):
currencyBasket = (1+self.getCurrencyBasketFromDB(periodicity = periodicity, fxRisk = fxRisk)).cumprod()
n = float(len(currencyBasket.columns))
title = 'Return Index '
if fxRisk: title += fxRisk
with plt.style.context((style)):
axes = currencyBasket.plot( figsize = [18,n*1.1], subplots = True, layout = [int(np.ceil(n/3)),3], xticks = currencyBasket.index[::5], title = title, sharex=False, style = 'g.--', rot = 45)
# axes = currencyBasket.plot(subplots = True)
for axe, v in zip(axes.flatten(),currencyBasket.columns):
axe.legend([v])
# axe.set_title(v)
plt.gcf().autolayout = True
# axes.tight_layout()
# plt.tight_layout()
def getCorrelationVariance(self, periodicity = 'daily', fxRisk = None, numeraire = 'None'):
if numeraire== 'USD':
currencyBasket = self.getAllCurrencyUSDReturnData(periodicity = periodicity, fxRisk = fxRisk)
else:
currencyBasket = self.getCurrencyBasketFromDB(periodicity = periodicity, fxRisk = fxRisk)
self.pca = PCA()
self.pca.fit_transform(currencyBasket.fillna(0))
covariance = self.pca.get_covariance()
variance = np.sqrt(np.diag(covariance))*np.eye(len(covariance))
varianceInv = np.linalg.inv(variance)
corr = np.dot(covariance,varianceInv)
corr = np.dot(varianceInv,corr)
corrDF = pd.DataFrame(corr, columns = currencyBasket.columns, index = currencyBasket.columns)
varDF = pd.Series(np.sqrt(np.diag(covariance)), index = currencyBasket.columns)
return corrDF, varDF
def plotCorrelationMatrix(self, periodicity = 'daily', fxRisk = None, numeraire = 'None', style = 'dark_background'):
corr, variance = self.getCorrelationVariance(periodicity = periodicity, fxRisk = fxRisk, numeraire = numeraire)
df = corr
with plt.style.context((style)):
plt.figure(figsize = (15,10))
plt.pcolor(df, cmap='coolwarm', vmin = -1, vmax = 1)
for (i, j), z in np.ndenumerate(corr.values):
plt.text(j+0.5, i+0.5, '{:0.2f}'.format(z), ha='center', va='center')
plt.yticks(np.arange(0.5, len(df.index), 1), df.columns)
plt.xticks(np.arange(0.5, len(df.index), 1), df.columns, rotation = 45)
ax = plt.gca()
ax.invert_xaxis()
ax.xaxis.tick_top()
plt.yticks(np.arange(0.5, len(df.index), 1), df.columns)
plt.xticks(np.arange(0.5, len(df.index), 1), df.columns, rotation = 45)
plt.colorbar()
plt.show()
def risk_type(self):
#Función que retorna los tipo de fxRisk cargados en BD
with self.openConnection() as con:
cur = con.cursor()
cur.execute("""SELECT DISTINCT FXRISK FROM fxIdentifierData""")
fxRisk = cur.fetchall()
if fxRisk:
return [str(r[0]) for r in fxRisk]
return False
示例10: get_iris
# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import get_covariance [as 别名]
from sklearn.decomposition import PCA
from dataset import *
import matplotlib.pyplot as plt
import matplotlib.cm as cmx
import matplotlib.colors as colors
from cache import StorageCache
dataset = get_iris()
# print('bandwidth:', dataset.get_bandwidth(force=True))
pca = PCA(n_components=2)
pca.fit(dataset.X)
X = pca.transform(dataset.X)
Y = dataset.Y
print('covariance:', pca.get_covariance())
def get_cmap(N):
'''Returns a function that maps each index in 0, 1, ... N-1 to a distinct
RGB color.'''
color_norm = colors.Normalize(vmin=0, vmax=N - 1)
scalar_map = cmx.ScalarMappable(norm=color_norm, cmap='hsv')
def map_index_to_rgb_color(index):
return scalar_map.to_rgba(index)
def static(index):
return 'rgb'[index]
return map_index_to_rgb_color
# return static
示例11: map
# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import get_covariance [as 别名]
this_row = row[:-1]
this_row = map(float, this_row)
X.append(this_row)
y.append(row[-1])
if i > SAMPLE_SIZE:
break
X = np.array(X)
data = X
n_digits = 2
print 'PCA'
pca_start = time()
pca = PCA(n_components=n_digits).fit(data)
if DRAW_EIGEN_VALUE_PLOT:
eig_val_cov, eig_vec_cov = np.linalg.eig(pca.get_covariance())
eig_val_cov.sort()
eig_val_cov = eig_val_cov[::-1]
x_axis = [i for i in range(len(eig_val_cov))]
plt.plot(x_axis, eig_val_cov, 'ro-', linewidth=2)
plt.title('Eigen Value vs Component')
plt.xlabel('Component')
plt.ylabel('Eigen Value')
#I don't like the default legend so I typically make mine like below, e.g.
#with smaller fonts and a bit transparent so I do not cover up data, and make
#it moveable by the viewer in case upper-right is a bad place for it
leg = plt.legend(['Eigenvalues from PCA'], loc='best', borderpad=0.3,
shadow=False, prop=matplotlib.font_manager.FontProperties(size='small'),
markerscale=0.4)
leg.get_frame().set_alpha(0.4)
leg.draggable(state=True)
示例12: main
# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import get_covariance [as 别名]
def main():
data = pd.read_csv("mushrooms.csv")
#==============================================================================
# print(data.head(6))
# print("================================================")
# print(data.isnull().sum())
# print("=====================")
# print(data['class'].unique())
# print("=====================")
# print(data.shape)
#==============================================================================
labelencoder = LabelEncoder()
for col in data.columns:
data[col] = labelencoder.fit_transform(data[col])
#print(data.head())
#==============================================================================
# ax = sns.boxplot(x='class', y='stalk-color-above-ring', data=data)
# ax = sns.stripplot(x="class", y='stalk-color-above-ring',
# data=data, jitter=True,
# edgecolor="gray")
# sns.plt.title("Class w.r.t stalkcolor above ring",fontsize=12)
#==============================================================================
train_feature = data.iloc[:,1:23]
test_feature = data.iloc[:, 0]
#Heatmap
#==============================================================================
# data = pd.DataFrame(train_feature)
# corrResult = data.corr()
# sns.heatmap(corrResult)
# plt.show()
#==============================================================================
#==============================================================================
# # Build a classification task using 3 informative features
# train_feature, test_feature = make_classification(n_samples=1000,
# n_features=10,
# n_informative=3,
# n_redundant=0,
# n_repeated=0,
# n_classes=2,
# random_state=0,
# shuffle=False)
# # Build a forest and compute the feature importance
# forest = ExtraTreesClassifier(n_estimators=250, random_state=0)
# forest.fit(train_feature, test_feature)
# importances = forest.feature_importances_
# for index in range(len(train_feature[0])):
# print ("Importance of feature ", index, "is", importances[index])
#==============================================================================
# Scale the data to be between -1 and 1
scaler = StandardScaler()
train_feature = scaler.fit_transform(train_feature)
pca = PCA()
pca.fit_transform(train_feature)
covariance = pca.get_covariance()
explained_variance=pca.explained_variance_
print(explained_variance)
# Splitting the data into training and testing dataset
X_train, X_test, y_train, y_test = train_test_split(train_feature,test_feature,test_size=0.2,random_state=4)
print("==============================================================")
print(" Logistic Regression ")
print("==============================================================")
# Logistic Regression
logic = LogisticRegression()
parameters_logic = {'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000] ,
'penalty':['l1','l2']
}
logic_grid_search = GridSearchCV(logic, parameters_logic,cv=10)
logic_grid_search.fit(X_train,y_train)
# Positive class prediction probabilities
y_prob = logic_grid_search.predict_proba(X_test)[:,1]
# Threshold the probabilities to give class predictions.
y_pred = np.where(y_prob > 0.5, 1, 0)
print("Logic Regresion result: ",logic_grid_search.score(X_test, y_pred),"%")
print("Best parameters for this model are: ",logic_grid_search.best_params_)
print("==============================================================")
print(" Naive Bayes ")
print("==============================================================")
# Gaussian Naive Bayes
naive = GaussianNB()
naive.fit(X_train, y_train)
#.........这里部分代码省略.........
示例13: PCA
# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import get_covariance [as 别名]
pca = PCA(whiten=False)
data = win.getData()
# win.shuffleIt(data, 2)
# win.shuffleIt(data, 1)
pca.fit(data)
'''plot'''
# expl_var_cumultative = [x / max(list(accumulate(pca.explained_variance_))) for x in list(accumulate(pca.explained_variance_))]
# plt.plot(range(len(pca.explained_variance_)), expl_var_cumultative,
# 'bo-', label="real")
ndims = range(1, len(pca.explained_variance_ratio_)+1)
expl_var_cumultative = list(accumulate(pca.explained_variance_ratio_))
plt.plot(ndims, expl_var_cumultative, 'r*', label='real - after PCA', markersize=10)
#
var = []
for x in range(27):
var.append(pca.get_covariance()[x][x])
var_r = var / sum(var)
var_r_ac = list(accumulate(sorted(var_r, reverse=True)))
plt.plot(ndims, var_r_ac, 'yo', label='real - before PCA', markersize=10)
#
# lbls = win.getCoursesNames()
# cdict = {lbls[ii]: v for ii, v in enumerate(var_r)}
# for key, value in sorted(cdict.items(), key=lambda it: it[1], reverse=True):
# print(key, value)
#
# print('\nCOMPZ:')
# compz = pca.components_[0, :]
# cdict_pca = {lbls[ii]: -v for ii, v in enumerate(compz)}
# for key, val in sorted(cdict_pca.items(), key=lambda it: it[1], reverse=True):
# print(key, ": ", val)
示例14: fit
# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import get_covariance [as 别名]
def fit(self, L, U, max_it=1000, p1='euclidean',p2='mahalanobis',pool_size=100):
metrics = [p1,p2]
# Initialize Training Sets
L1 = Data(np.copy(L.X), np.copy(L.y))
L2 = Data(np.copy(L.X), np.copy(L.y))
Ls = [L1, L2]
# Select pool of unlabeled data
Upool_indexs = np.random.choice(len(U), pool_size, replace=False)
Upool = [U[i] for i in Upool_indexs]
# Create the two kNN regressors
kNNs = []
for m in metrics:
r = None
if m == 'mahalanobis':
pca = PCA()
pca.fit(L.X)
v = pca.get_covariance()
r = KNeighborsRegressor(n_neighbors=self.k,metric=m, V=v)
else:
r = KNeighborsRegressor(n_neighbors=self.k,metric=m)
kNNs.append(r)
# train regressors on both sets
for i in [0,1]:
kNNs[i].fit(Ls[i].X, Ls[i].y)
# repeat for max_it rounds
for i in range(max_it):
print i
# keep list of changes to Ls
pi = [[],[]]
# for each training and regressor set
for j in [0,1]:
#print j
Upool_ys = kNNs[j].predict(Upool)
# get the neighbors of each unlabeled point - as indexs of the orig lists
Upool_ns = kNNs[j].kneighbors(Upool, return_distance=False)
deltas = []
for r in xrange(len(Upool)):
Lj_alt = Union(Ls[j], Upool[r], Upool_ys[r])
alt_kNN = None
m = metrics[j]
if m == 'mahalanobis':
pca.fit(Lj_alt.X)
v = pca.get_covariance()
alt_kNN = KNeighborsRegressor(n_neighbors=self.k,metric=m, V=v)
else:
alt_kNN = KNeighborsRegressor(n_neighbors=self.k,metric=m)
alt_kNN.fit(Lj_alt.X, Lj_alt.y)
neighbors_indexs = Upool_ns[r]
neighbors = [Ls[j].X[n] for n in neighbors_indexs]
kNN_n_ys = kNNs[j].predict(neighbors)
altkNN_n_ys = alt_kNN.predict(neighbors)
real_n_ys = [Ls[j].y[n] for n in neighbors_indexs]
delta = 0
for n in xrange(self.k):
orig_diff = real_n_ys[n] - kNN_n_ys[n]
alt_diff = real_n_ys[n] - altkNN_n_ys[n]
delta += orig_diff**2 - alt_diff**2
deltas.append(delta)
sorted_ds = sorted(deltas)[::-1]
if sorted_ds[0] > 0:
highest = sorted_ds[0]
index = deltas.index(highest)
xj = Upool[index]
yj = Upool_ys[index]
pi[j] = [(xj,yj)]
uIndex = U.tolist().index(xj.tolist())
np.delete(U, uIndex)
newLs = Ls
replenishCount = 0
for i in [0,1]:
for px,py in pi[1-i]:
replenishCount += 1
newLs[i] = Union(newLs[i],px,py)
# if no changes need to be made, we have converged
empty = True
for a in pi:
if a:
empty = False
if empty:
break
# else make changes, retrain, and replinesh untrained pool
Ls = newLs
for i in [0,1]:
kNNs[i].fit(Ls[i].X, Ls[i].y)
#Upool_indexs = np.random.choice(len(U), replenishCount, replace=False)
#Upool_addition = [U[i] for i in Upool_indexs]
#Upool = np.append(Upool, Upool_addition, axis=0)
Upool_indexs = np.random.choice(len(U), pool_size, replace=False)
#.........这里部分代码省略.........