当前位置: 首页>>代码示例>>Python>>正文


Python PCA.components_方法代码示例

本文整理汇总了Python中sklearn.decomposition.PCA.components_方法的典型用法代码示例。如果您正苦于以下问题:Python PCA.components_方法的具体用法?Python PCA.components_怎么用?Python PCA.components_使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.decomposition.PCA的用法示例。


在下文中一共展示了PCA.components_方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_init

# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import components_ [as 别名]
    def test_init(self, df_norm, n_components):
        from flotilla.compute.decomposition import DataFramePCA

        test_pca = DataFramePCA(df_norm, n_components=n_components)

        true_pca = PCA(n_components=n_components)
        true_pca.fit(df_norm.values)
        pc_names = ['pc_{}'.format(i + 1) for i in
                    range(true_pca.components_.shape[0])]
        true_pca.components_ = pd.DataFrame(true_pca.components_,
                                            index=pc_names,
                                            columns=df_norm.columns)
        true_pca.explained_variance_ = pd.Series(
            true_pca.explained_variance_, index=pc_names)
        true_pca.explained_variance_ratio_ = pd.Series(
            true_pca.explained_variance_ratio_, index=pc_names)
        true_pca.reduced_space = true_pca.transform(df_norm.values)
        true_pca.reduced_space = pd.DataFrame(true_pca.reduced_space,
                                              index=df_norm.index,
                                              columns=pc_names)

        npt.assert_array_equal(test_pca.X, df_norm.values)
        pdt.assert_frame_equal(test_pca.components_,
                               true_pca.components_)
        pdt.assert_series_equal(test_pca.explained_variance_,
                                true_pca.explained_variance_)
        pdt.assert_series_equal(test_pca.explained_variance_ratio_,
                                true_pca.explained_variance_ratio_)
        pdt.assert_frame_equal(test_pca.reduced_space,
                               true_pca.reduced_space)
开发者ID:EdwardBetts,项目名称:flotilla,代码行数:32,代码来源:test_decomposition.py

示例2: load

# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import components_ [as 别名]
	def load(self, filename='pca.nc'):
		"""
		Read sklearn PCA parameters from a netcdf file
		"""

		infile = netCDF4.Dataset(filename, 'r')

		self.locations = [json.loads(string) for string in list(infile.variables['location'])]
		self.pcas = []

		id = 0
		for location in self.locations:
			n_components = infile.variables['n_components'][id]
			components = infile.variables['components'][id]
			mean = infile.variables['means'][id]
			explained_variance_ratio = infile.variables['explained_variance_ratio'][id]
			noise_variance = infile.variables['noise_variance'][id]

			pca = PCA(n_components=n_components)
			pca.components_ = components
			pca.mean_ = mean
			pca.explained_variance_ratio_ = explained_variance_ratio
			pca.noise_variance_ = noise_variance

			self.pcas.append(pca)

			id += 1
开发者ID:jackaranda,项目名称:phasespace,代码行数:29,代码来源:pca_sklearn.py

示例3: get_components

# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import components_ [as 别名]
def get_components(data):
    pca = PCA(n_components=COMPONENTS)
    pca.fit(data)
    new_components = np.array([np.dot(component, ortho_rotation(pca.components_)) for component in pca.components_])
    pca.components_ = new_components
    print(pca.components_, pca.explained_variance_ratio_)
    transformed = pca.transform(data)
    df_transformed = pd.DataFrame(data=transformed,  index=data.index)
    return df_transformed
开发者ID:tj2huang,项目名称:CurrencyPCA,代码行数:11,代码来源:ManageData.py

示例4: test_init

# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import components_ [as 别名]
    def test_init(self, df_norm, n_components):
        from flotilla.compute.decomposition import DataFramePCA

        test_pca = DataFramePCA(df_norm, n_components=n_components)

        true_pca = PCA(n_components=n_components)
        true_pca.fit(df_norm.values)
        pc_names = ['pc_{}'.format(i+1) for i in
                    range(true_pca.components_.shape[0])]
        true_pca.components_ = pd.DataFrame(true_pca.components_,
                                            index=pc_names,
                                            columns=df_norm.columns)
        true_pca.explained_variance_ = pd.Series(
            true_pca.explained_variance_, index=pc_names)
        true_pca.explained_variance_ratio_ = pd.Series(
            true_pca.explained_variance_ratio_, index=pc_names)
        true_pca.reduced_space = true_pca.transform(df_norm.values)
        true_pca.reduced_space = pd.DataFrame(true_pca.reduced_space,
                                              index=df_norm.index,
                                              columns=pc_names)

        npt.assert_array_equal(test_pca.X, df_norm.values)
        pdt.assert_frame_equal(test_pca.components_,
                               true_pca.components_)
        pdt.assert_series_equal(test_pca.explained_variance_,
                               true_pca.explained_variance_)
        pdt.assert_series_equal(test_pca.explained_variance_ratio_,
                               true_pca.explained_variance_ratio_)
        pdt.assert_frame_equal(test_pca.reduced_space,
                               true_pca.reduced_space)
        
        
# class TestDataFrameNMF():
#     def test_init(self, df_nonneg, n_components, RANDOM_STATE):
#         from flotilla.compute.decomposition import DataFrameNMF
#
#         test_nmf = DataFrameNMF(df_nonneg, n_components=n_components,
#                                 random_state=RANDOM_STATE)
#
#         true_nmf = NMF(n_components=n_components, random_state=RANDOM_STATE)
#         true_nmf.reduced_space = true_nmf.fit_transform(df_nonneg.values)
#         pc_names = ['pc_{}'.format(i + 1) for i in
#                     range(true_nmf.components_.shape[0])]
#         true_nmf.reduced_space = pd.DataFrame(true_nmf.reduced_space,
#                                               index=df_nonneg.index,
#                                               columns=pc_names)
#         true_nmf.components_ = pd.DataFrame(true_nmf.components_,
#                                             index=pc_names,
#                                             columns=df_nonneg.columns)
#
#         npt.assert_almost_equal(test_nmf.X, df_nonneg.values, decimal=4)
#         pdt.assert_frame_equal(test_nmf.components_,
#                                true_nmf.components_)
#         pdt.assert_frame_equal(test_nmf.reduced_space,
#                                true_nmf.reduced_space)
开发者ID:bobbybabra,项目名称:flotilla,代码行数:57,代码来源:test_decomposition.py

示例5: fit

# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import components_ [as 别名]
	def fit(self, predictors, locations, **kwargs):

		self.locations = locations
		self.pcas = []
		self.n = predictors['n']

		for location in locations:
			raw = extract_n_by_n(predictors, location, **kwargs)
			
			#pca = PCA(n_components='mle', whiten=True)
			#pca = PCA(n_components=0.95, whiten=True)
			pca = PCA(n_components=2)
			
			pca = pca.fit(raw)
			components = pca.components_
			pca.components_ = components
			
			self.pcas.append(pca.fit(raw))

			print "pca: ", location, pca.n_components_, pca.explained_variance_ratio_
开发者ID:jackaranda,项目名称:phasespace,代码行数:22,代码来源:pca_sklearn.py

示例6: list

# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import components_ [as 别名]
#MAKE DF from BIOM table
col = ['sample']
for i in list(range(8)):
        col.append('OTU'+str(i)) #list of column names

table= pd.read_csv('{}/{}'.format(cwd,inputfile),delim_whitespace=True, header= None)
table.columns= col # name columns
table= table.set_index('sample')    # index by sample names
null_data = table[table.isnull().any(axis=1)]
print '**Warning: the following lines are missing data. All nulls will be filled with zeros'
print null_data
table= table.fillna(0)   #replace any missing values with zeros
table.to_csv(r'pd_df.csv')
print 'pandas dataframe saved as: pd_df.csv'
##REMOVING PC1
pca = PCA(n_components=8) #keeps 8 components? was 100 in original script-not sure why
#X = pca.fit_transform(table.apply(np.log(table))) #fit df into model 
X= pca.fit_transform(table)
#print X[1]
Y = X[:,1:] #Y = every value in list X except the first one
#print Y[1] 	#just showing that the first value is removed
untrans = pca.inverse_transform(X)  #get original data matrix back (w/out PC1 variance)
pca.components_ = pca.components_[1:] #remove the first PCA vector 
trans = pca.inverse_transform(Y)
print 'new pca vectors saved as: transformed_pca.txt'
with open('transformed_pca.txt' , 'w') as f:
	count =0
	while count < len(trans):
		f.write(trans[count])
		count += 1
开发者ID:aseveritt,项目名称:scripts_Eisen,代码行数:32,代码来源:sub_pca.py


注:本文中的sklearn.decomposition.PCA.components_方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。