当前位置: 首页>>代码示例>>Python>>正文


Python PCA.get_params方法代码示例

本文整理汇总了Python中sklearn.decomposition.PCA.get_params方法的典型用法代码示例。如果您正苦于以下问题:Python PCA.get_params方法的具体用法?Python PCA.get_params怎么用?Python PCA.get_params使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.decomposition.PCA的用法示例。


在下文中一共展示了PCA.get_params方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_establish_reducer_use_existing

# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import get_params [as 别名]
    def test_establish_reducer_use_existing(self):
        from cupcake.smush.base import SmushPlotterBase

        pca_kws = {}
        n_components = 2
        reducer = PCA(n_components=n_components, **pca_kws)

        p = SmushPlotterBase()
        p.establish_reducer(reducer)

        assert isinstance(p.reducer, type(reducer))
        pdt.assert_dict_equal(p.reducer.get_params(), reducer.get_params())
开发者ID:olgabot,项目名称:cupcake,代码行数:14,代码来源:test_base.py

示例2: dict

# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import get_params [as 别名]
#reverse_dims = dict()
#for k in dimensions:
#  for e in k['bins']:
#    reverse_dims[e['name']] = (k['key'], e['key'])

## scale data if asked
if scale_data:
  data = scale(data)

## compute PCA or manual projection if necessary and project data
if (projection_mode == 1):
  print "### using PCA with %s components ###" % n_components
#pca = PCA(n_components=n_digits).fit(data)
  pca = PCA(n_components=n_components)
  reduced_data = pca.fit_transform(data)
  print pca.get_params()
  with open(get_filename("pca.pk"),"wb") as filehandler:
    pickle.dump(pca, filehandler)
  print "ok !"
elif (projection_mode >= 2):
  print "### using manual projection ###"
  n_components = 3 # for display
  # get axis
  # assign axis to mask
  nb_rows = len(mask)
  axis = [0] * nb_rows
  weight = [1] * nb_rows
  for i in range(nb_rows):
    var = dims[mask[i]]
    if var in X:
      axis[i] = 0
开发者ID:Thibaut-Fatus,项目名称:clustering,代码行数:33,代码来源:clustering.py

示例3: PcaWhitening

# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import get_params [as 别名]
class PcaWhitening(object):
    """
    Whitens the data using principal component analysis.

    To speed up training the transformation, you can specify how many data
    points from the training data source to use.

    Parameters
    ----------
    n_train_vectors : int or None
        Number of data points to use when training the PCA. If `None`, use all
        values.
    n_components : int or None
        Number of components to use in PCA. If `None`, use all components,
        resulting in no data reduction.
    """

    def __init__(self, n_train_vectors=None, n_components=None):
        from sklearn.decomposition import PCA
        self.pca = PCA(whiten=True, n_components=self.n_components)
        self.fit = False
        self.n_train_vectors = n_train_vectors
        self.n_components = n_components

    def __call__(self, data):
        """Project the :param:data using the PCA projection."""
        if self.fit:
            # flatten features, pca only works on 1d arrays
            data_shape = data.shape
            data_flat = data.reshape((data_shape[0], -1))
            whitened_data = self.pca.transform(data_flat)
            # get back original shape
            return whitened_data.reshape(data_shape).astype(np.float32)
        else:
            return data

    def train(self, data_source, batch_size=4096):
        """
        Fit the PCA projection to data.

        Parameters
        ----------
        data_source : :class:DataSource
            Data to use for fitting the projection
        batch_size : int
            Not used here.
        """

        # select a random subset of the data if self.n_train_vectors is not
        # None
        if self.n_train_vectors is not None:
            sel_data = list(np.random.choice(data_source.n_data,
                                             size=self.n_train_vectors,
                                             replace=False))
        else:
            sel_data = slice(None)
        data = data_source[sel_data][0]  # ignore the labels
        data_flat = data.reshape((data.shape[0], -1))  # flatten features
        self.pca.fit(data_flat)
        self.fit = True

    def load(self, filename):
        """
        Load the PCA projection parameters from a pickle file.

        Parameters
        ----------
        filename : str
            Pickle file containing the projection parameters

        """
        with open(filename, 'r') as f:
            self.pca.set_params(pickle.load(f))
            self.fit = True

    def save(self, filename):
        """
        Save the PCA projection parameters to a pickle file.

        Parameters
        ----------
        filename : str
            Pickle file to store the parameters to
        """
        with open(filename, 'w') as f:
            pickle.dump(self.pca.get_params(deep=True), f)
开发者ID:fdlm,项目名称:dmgr,代码行数:88,代码来源:preprocessing.py

示例4: printHeader

# 需要导入模块: from sklearn.decomposition import PCA [as 别名]
# 或者: from sklearn.decomposition.PCA import get_params [as 别名]
#######
# PCA Non Normalized Data
#######
printHeader("Run PCA On Non-Normalized Data 15 Components");

from sklearn.decomposition import PCA
print(np.array([trainDataLabels]))
#trainDataNew = np.concatenate((trainData, np.array([trainDataLabels]).T),axis=1);

pca = PCA(n_components=15);
pca.fit(trainData);
transformedTrainData = pca.transform(trainData);
transformedTestData = pca.transform(testData);

print(pca.get_params());


printHeader("KKN-C PCA Data with Non-Normalized Train Data Hyper-Parameter Search");

#Let's do some hyper-parameter searching
trainDataSplit1 = np.array(transformedTrainData[0:int(len(transformedTrainData)/2.0)]);
trainDataSplit2 = np.array(transformedTrainData[int(len(transformedTrainData)/2.0):]);
trainDataSplit1Labels = np.array(trainDataLabels[0:int(len(transformedTrainData)/2.0)]);
trainDataSplit2Labels = np.array(trainDataLabels[int(len(transformedTrainData)/2.0):]);
maxK = 1;
maxAccuracy = 0;
for k in range(1,39,2):
	knn = KNeighborsClassifier(n_neighbors=k, metric="euclidean")
	knn.fit(trainDataSplit1, trainDataSplit1Labels)
	predictions = knn.predict(trainDataSplit2)
开发者ID:serenasimkus,项目名称:Twitterific,代码行数:32,代码来源:fullScript.py


注:本文中的sklearn.decomposition.PCA.get_params方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。