本文整理汇总了Python中shogun.Classifier.SVMLight.set_epsilon方法的典型用法代码示例。如果您正苦于以下问题:Python SVMLight.set_epsilon方法的具体用法?Python SVMLight.set_epsilon怎么用?Python SVMLight.set_epsilon使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类shogun.Classifier.SVMLight
的用法示例。
在下文中一共展示了SVMLight.set_epsilon方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: classifier_svmlight_modular
# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import set_epsilon [as 别名]
def classifier_svmlight_modular (fm_train_dna=traindat,fm_test_dna=testdat,label_train_dna=label_traindat,C=1.2,epsilon=1e-5,num_threads=1):
from shogun.Features import StringCharFeatures, Labels, DNA
from shogun.Kernel import WeightedDegreeStringKernel
try:
from shogun.Classifier import SVMLight
except ImportError:
print 'No support for SVMLight available.'
return
feats_train=StringCharFeatures(DNA)
feats_train.set_features(fm_train_dna)
feats_test=StringCharFeatures(DNA)
feats_test.set_features(fm_test_dna)
degree=20
kernel=WeightedDegreeStringKernel(feats_train, feats_train, degree)
labels=Labels(label_train_dna)
svm=SVMLight(C, kernel, labels)
svm.set_epsilon(epsilon)
svm.parallel.set_num_threads(num_threads)
svm.train()
kernel.init(feats_train, feats_test)
svm.apply().get_labels()
return kernel
示例2: svm_light
# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import set_epsilon [as 别名]
def svm_light ():
print 'SVMLight'
from shogun.Features import StringCharFeatures, Labels, DNA
from shogun.Kernel import WeightedDegreeStringKernel
try:
from shogun.Classifier import SVMLight
except ImportError:
print 'No support for SVMLight available.'
return
feats_train=StringCharFeatures(DNA)
feats_train.set_features(fm_train_dna)
feats_test=StringCharFeatures(DNA)
feats_test.set_features(fm_test_dna)
degree=20
kernel=WeightedDegreeStringKernel(feats_train, feats_train, degree)
C=1.2
epsilon=1e-5
num_threads=1
labels=Labels(label_train_dna)
svm=SVMLight(C, kernel, labels)
svm.set_epsilon(epsilon)
svm.parallel.set_num_threads(num_threads)
svm.train()
kernel.init(feats_train, feats_test)
svm.classify().get_labels()
示例3: classifier_svmlight_linear_term_modular
# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import set_epsilon [as 别名]
def classifier_svmlight_linear_term_modular(fm_train_dna=traindna,fm_test_dna=testdna, \
label_train_dna=label_traindna,degree=3, \
C=10,epsilon=1e-5,num_threads=1):
from shogun.Features import StringCharFeatures, BinaryLabels, DNA
from shogun.Kernel import WeightedDegreeStringKernel
from shogun.Classifier import SVMLight
feats_train=StringCharFeatures(DNA)
feats_train.set_features(fm_train_dna)
feats_test=StringCharFeatures(DNA)
feats_test.set_features(fm_test_dna)
kernel=WeightedDegreeStringKernel(feats_train, feats_train, degree)
labels=BinaryLabels(label_train_dna)
svm=SVMLight(C, kernel, labels)
svm.set_qpsize(3)
svm.set_linear_term(-numpy.array([1,2,3,4,5,6,7,8,7,6], dtype=numpy.double));
svm.set_epsilon(epsilon)
svm.parallel.set_num_threads(num_threads)
svm.train()
kernel.init(feats_train, feats_test)
out = svm.apply().get_labels()
return out,kernel
示例4: svm_learn
# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import set_epsilon [as 别名]
def svm_learn(kernel, labels, options):
"""train SVM using SVMLight or LibSVM
Arguments:
kernel -- kernel object from Shogun toolbox
lebels -- list of labels
options -- object containing option data
Return:
trained svm object
"""
try:
svm=SVMLight(options.svmC, kernel, Labels(numpy.array(labels, dtype=numpy.double)))
except NameError:
svm=LibSVM(options.svmC, kernel, Labels(numpy.array(labels, dtype=numpy.double)))
if options.quiet == False:
svm.io.set_loglevel(MSG_INFO)
svm.io.set_target_to_stderr()
svm.set_epsilon(options.epsilon)
svm.parallel.set_num_threads(1)
if options.weight != 1.0:
svm.set_C(options.svmC, options.svmC*options.weight)
svm.train()
if options.quiet == False:
svm.io.set_loglevel(MSG_ERROR)
return svm
示例5: ShogunPredictor
# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import set_epsilon [as 别名]
class ShogunPredictor(object):
"""
basic single-task promoter model using string kernels
"""
def __init__(self, degree=4, shifts=32, kernel_cache=10000, cost=1.0):
#TODO: clean up degree
self.degree = degree
self.degree_wdk = degree
self.degree_spectrum = degree
self.shifts = shifts
self.kernel_cache = kernel_cache
self.cost = cost
self.center_offset = 50
self.center_pos = 1200
self.epsilon = 10e-2
self.num_threads = 4
def train(self, data, labels):
kernel = create_promoter_kernel(data, self.center_offset, self.center_pos, self.degree_wdk, self.degree_spectrum, self.shifts, kernel_cache=self.kernel_cache)
print "len(labels) = %i" % (len(labels))
lab = create_labels(labels)
self.svm = SVMLight(self.cost, kernel, lab)
# show debugging output
self.svm.io.enable_progress()
self.svm.io.set_loglevel(MSG_DEBUG)
# optimization settings
num_threads = self.num_threads
self.svm.parallel.set_num_threads(num_threads)
self.svm.set_epsilon(self.epsilon)
self.svm.train()
return self
def predict(self, data):
feat = create_promoter_features(data, self.center_offset, self.center_pos)
out = self.svm.apply(feat).get_values()
return out
示例6: svm_learn
# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import set_epsilon [as 别名]
def svm_learn(kernel, labels, svmC, epsilon, weight):
"""
"""
try:
svm=SVMLight(svmC, kernel, Labels(numpy.array(labels, dtype=numpy.double)))
except NameError:
print 'No support for SVMLight available.'
return
svm.io.set_loglevel(MSG_INFO)
svm.io.set_target_to_stderr()
svm.set_epsilon(epsilon)
svm.parallel.set_num_threads(1)
if weight != 1.0:
svm.set_C(svmC, svmC*weight)
svm.train()
svm.io.set_loglevel(MSG_ERROR)
return svm
示例7: do_batch_linadd
# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import set_epsilon [as 别名]
def do_batch_linadd ():
print 'SVMlight batch'
from shogun.Features import StringCharFeatures, Labels, DNA
from shogun.Kernel import WeightedDegreeStringKernel
try:
from shogun.Classifier import SVMLight
except ImportError:
print 'No support for SVMLight available.'
return
feats_train=StringCharFeatures(DNA)
feats_train.set_features(fm_train_dna)
feats_test=StringCharFeatures(DNA)
feats_test.set_features(fm_test_dna)
degree=20
kernel=WeightedDegreeStringKernel(feats_train, feats_train, degree)
C=1
epsilon=1e-5
num_threads=2
labels=Labels(label_train_dna)
svm=SVMLight(C, kernel, labels)
svm.set_epsilon(epsilon)
svm.parallel.set_num_threads(num_threads)
svm.train()
kernel.init(feats_train, feats_test)
#print 'SVMLight Objective: %f num_sv: %d' % \
# (svm.get_objective(), svm.get_num_support_vectors())
svm.set_batch_computation_enabled(False)
svm.set_linadd_enabled(False)
svm.classify().get_labels()
svm.set_batch_computation_enabled(True)
svm.classify().get_labels()
示例8: classifier_svmlight_batch_linadd_modular
# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import set_epsilon [as 别名]
def classifier_svmlight_batch_linadd_modular(fm_train_dna, fm_test_dna,
label_train_dna, degree, C, epsilon, num_threads):
from shogun.Features import StringCharFeatures, BinaryLabels, DNA
from shogun.Kernel import WeightedDegreeStringKernel, MSG_DEBUG
try:
from shogun.Classifier import SVMLight
except ImportError:
print('No support for SVMLight available.')
return
feats_train=StringCharFeatures(DNA)
#feats_train.io.set_loglevel(MSG_DEBUG)
feats_train.set_features(fm_train_dna)
feats_test=StringCharFeatures(DNA)
feats_test.set_features(fm_test_dna)
degree=20
kernel=WeightedDegreeStringKernel(feats_train, feats_train, degree)
labels=BinaryLabels(label_train_dna)
svm=SVMLight(C, kernel, labels)
svm.set_epsilon(epsilon)
svm.parallel.set_num_threads(num_threads)
svm.train()
kernel.init(feats_train, feats_test)
#print('SVMLight Objective: %f num_sv: %d' % \)
# (svm.get_objective(), svm.get_num_support_vectors())
svm.set_batch_computation_enabled(False)
svm.set_linadd_enabled(False)
svm.apply().get_labels()
svm.set_batch_computation_enabled(True)
labels = svm.apply().get_labels()
return labels, svm
示例9:
# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import set_epsilon [as 别名]
print 'SVMLight'
from shogun.Features import StringCharFeatures, Labels, DNA
from shogun.Kernel import WeightedDegreeStringKernel
from shogun.Classifier import SVMLight
feats_train=StringCharFeatures(DNA)
feats_train.set_features(fm_train_dna)
feats_test=StringCharFeatures(DNA)
feats_test.set_features(fm_test_dna)
kernel=WeightedDegreeStringKernel(feats_train, feats_train, degree)
C=10
epsilon=1e-5
num_threads=1
labels=Labels(label_train_dna)
svm=SVMLight(C, kernel, labels)
svm.set_qpsize(3)
svm.set_linear_term(-numpy.array([1,2,3,4,5,6,7,8,7,6], dtype=numpy.double));
svm.set_epsilon(epsilon)
svm.parallel.set_num_threads(num_threads)
svm.train()
kernel.init(feats_train, feats_test)
out = svm.classify().get_labels()
示例10: ShogunPredictor
# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import set_epsilon [as 别名]
class ShogunPredictor(object):
"""
basic promoter model using string kernels
"""
def __init__(self, param):
self.param = param
def train(self, data, labels):
"""
model training
"""
# centered WDK/WDK-shift
if self.param["shifts"] == 0:
kernel_center = WeightedDegreeStringKernel(self.param["degree"])
else:
kernel_center = WeightedDegreePositionStringKernel(10, self.param["degree"])
shifts_vector = numpy.ones(self.param["center_offset"]*2, dtype=numpy.int32)*self.param["shifts"]
kernel_center.set_shifts(shifts_vector)
kernel_center.set_cache_size(self.param["kernel_cache"]/3)
# border spetrum kernels
size = self.param["kernel_cache"]/3
use_sign = False
kernel_left = WeightedCommWordStringKernel(size, use_sign)
kernel_right = WeightedCommWordStringKernel(size, use_sign)
# assemble combined kernel
kernel = CombinedKernel()
kernel.append_kernel(kernel_center)
kernel.append_kernel(kernel_left)
kernel.append_kernel(kernel_right)
## building features
feat = create_features(data, self.param["center_offset"], self.param["center_pos"])
# init combined kernel
kernel.init(feat, feat)
print "len(labels) = %i" % (len(labels))
lab = BinaryLabels(numpy.double(labels))
self.svm = SVMLight(self.param["cost"], kernel, lab)
# show debugging output
self.svm.io.enable_progress()
self.svm.io.set_loglevel(MSG_DEBUG)
# optimization settings
num_threads = 2
self.svm.parallel.set_num_threads(num_threads)
self.svm.set_epsilon(10e-8)
self.svm.train()
return self
def predict(self, data):
"""
model prediction
"""
feat = create_features(data, self.param["center_offset"], self.param["center_pos"])
out = self.svm.apply(feat).get_values()
return out