本文整理汇总了Python中shogun.Classifier.SVMLight.set_batch_computation_enabled方法的典型用法代码示例。如果您正苦于以下问题:Python SVMLight.set_batch_computation_enabled方法的具体用法?Python SVMLight.set_batch_computation_enabled怎么用?Python SVMLight.set_batch_computation_enabled使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类shogun.Classifier.SVMLight
的用法示例。
在下文中一共展示了SVMLight.set_batch_computation_enabled方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _train_single_svm
# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import set_batch_computation_enabled [as 别名]
def _train_single_svm(self, param, kernel, lab):
kernel.set_cache_size(500)
#lab = shogun_factory.create_labels(data.labels)
svm = SVMLight(param.cost, kernel, lab)
# set up SVM
num_threads = 8
svm.io.enable_progress()
svm.io.set_loglevel(shogun.Classifier.MSG_DEBUG)
svm.parallel.set_num_threads(num_threads)
svm.set_linadd_enabled(False)
svm.set_batch_computation_enabled(False)
# normalize cost
#norm_c_pos = param.cost / float(len([l for l in data.labels if l==1]))
#norm_c_neg = param.cost / float(len([l for l in data.labels if l==-1]))
#svm.set_C(norm_c_neg, norm_c_pos)
# start training
svm.train()
return svm
示例2: do_batch_linadd
# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import set_batch_computation_enabled [as 别名]
def do_batch_linadd ():
print 'SVMlight batch'
from shogun.Features import StringCharFeatures, Labels, DNA
from shogun.Kernel import WeightedDegreeStringKernel
try:
from shogun.Classifier import SVMLight
except ImportError:
print 'No support for SVMLight available.'
return
feats_train=StringCharFeatures(DNA)
feats_train.set_features(fm_train_dna)
feats_test=StringCharFeatures(DNA)
feats_test.set_features(fm_test_dna)
degree=20
kernel=WeightedDegreeStringKernel(feats_train, feats_train, degree)
C=1
epsilon=1e-5
num_threads=2
labels=Labels(label_train_dna)
svm=SVMLight(C, kernel, labels)
svm.set_epsilon(epsilon)
svm.parallel.set_num_threads(num_threads)
svm.train()
kernel.init(feats_train, feats_test)
#print 'SVMLight Objective: %f num_sv: %d' % \
# (svm.get_objective(), svm.get_num_support_vectors())
svm.set_batch_computation_enabled(False)
svm.set_linadd_enabled(False)
svm.classify().get_labels()
svm.set_batch_computation_enabled(True)
svm.classify().get_labels()
示例3: classifier_svmlight_batch_linadd_modular
# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import set_batch_computation_enabled [as 别名]
def classifier_svmlight_batch_linadd_modular(fm_train_dna, fm_test_dna,
label_train_dna, degree, C, epsilon, num_threads):
from shogun.Features import StringCharFeatures, BinaryLabels, DNA
from shogun.Kernel import WeightedDegreeStringKernel, MSG_DEBUG
try:
from shogun.Classifier import SVMLight
except ImportError:
print('No support for SVMLight available.')
return
feats_train=StringCharFeatures(DNA)
#feats_train.io.set_loglevel(MSG_DEBUG)
feats_train.set_features(fm_train_dna)
feats_test=StringCharFeatures(DNA)
feats_test.set_features(fm_test_dna)
degree=20
kernel=WeightedDegreeStringKernel(feats_train, feats_train, degree)
labels=BinaryLabels(label_train_dna)
svm=SVMLight(C, kernel, labels)
svm.set_epsilon(epsilon)
svm.parallel.set_num_threads(num_threads)
svm.train()
kernel.init(feats_train, feats_test)
#print('SVMLight Objective: %f num_sv: %d' % \)
# (svm.get_objective(), svm.get_num_support_vectors())
svm.set_batch_computation_enabled(False)
svm.set_linadd_enabled(False)
svm.apply().get_labels()
svm.set_batch_computation_enabled(True)
labels = svm.apply().get_labels()
return labels, svm
示例4: SVMLight
# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import set_batch_computation_enabled [as 别名]
##################################################################
# Train SVMs
##################################################################
# create shogun objects
wdk_tree = shogun_factory.create_kernel(data.examples, param)
lab = shogun_factory.create_labels(data.labels)
wdk_tree.set_normalizer(tree_normalizer)
wdk_tree.init_normalizer()
print "--->",wdk_tree.get_normalizer().get_name()
svm_tree = SVMLight(cost, wdk_tree, lab)
svm_tree.set_linadd_enabled(False)
svm_tree.set_batch_computation_enabled(False)
svm_tree.train()
del wdk_tree
del tree_normalizer
print "finished training tree-norm SVM:", svm_tree.get_objective()
wdk = shogun_factory.create_kernel(data.examples, param)
wdk.set_normalizer(normalizer)
wdk.init_normalizer()
print "--->",wdk.get_normalizer().get_name()
示例5: _train
# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import set_batch_computation_enabled [as 别名]
def _train(self, train_data, param):
"""
training procedure using training examples and labels
@param train_data: Data relevant to SVM training
@type train_data: dict<str, list<instances> >
@param param: Parameters for the training procedure
@type param: ParameterSvm
"""
assert(param.base_similarity >= 1)
# merge data sets
data = PreparedMultitaskData(train_data, shuffle=False)
# create shogun data objects
base_wdk = shogun_factory.create_kernel(data.examples, param)
lab = shogun_factory.create_labels(data.labels)
# set normalizer
normalizer = MultitaskKernelNormalizer(data.task_vector_nums)
# load data
#f = file("/fml/ag-raetsch/home/cwidmer/Documents/phd/projects/multitask/data/mhc/MHC_Distanzen/MHC_Distanzen/ALL_PseudoSeq_BlosumEnc_pearson.txt")
f = file("/fml/ag-raetsch/home/cwidmer/Documents/phd/projects/multitask/data/mhc/MHC_Distanzen/MHC_Distanzen/All_PseudoSeq_Hamming.txt")
#f = file("/fml/ag-raetsch/home/cwidmer/Documents/phd/projects/multitask/data/mhc/MHC_Distanzen/MHC_Distanzen/ALL_PseudoSeq_BlosumEnc_euklid.txt")
#f = file("/fml/ag-raetsch/home/cwidmer/Documents/phd/projects/multitask/data/mhc/MHC_Distanzen/MHC_Distanzen/ALL_RAxML.txt")
num_lines = int(f.readline().strip())
task_distances = numpy.zeros((num_lines, num_lines))
name_to_id = {}
for (i, line) in enumerate(f):
tokens = line.strip().split("\t")
name = str(tokens[0])
name_to_id[name] = i
entry = numpy.array([v for (j,v) in enumerate(tokens) if j!=0])
assert len(entry)==num_lines, "len_entry %i, num_lines %i" % (len(entry), num_lines)
task_distances[i,:] = entry
# cut relevant submatrix
active_ids = [name_to_id[name] for name in data.get_task_names()]
tmp_distances = task_distances[active_ids, :]
tmp_distances = tmp_distances[:, active_ids]
print "distances ", tmp_distances.shape
# normalize distances
task_distances = task_distances / numpy.max(tmp_distances)
similarities = numpy.zeros((data.get_num_tasks(), data.get_num_tasks()))
# convert distance to similarity
for task_name_lhs in data.get_task_names():
for task_name_rhs in data.get_task_names():
# convert similarity with simple transformation
similarity = param.base_similarity - task_distances[name_to_id[task_name_lhs], name_to_id[task_name_rhs]]
normalizer.set_task_similarity(data.name_to_id(task_name_lhs), data.name_to_id(task_name_rhs), similarity)
# save for later
similarities[data.name_to_id(task_name_lhs),data.name_to_id(task_name_rhs)] = similarity
# set normalizer
base_wdk.set_normalizer(normalizer)
base_wdk.init_normalizer()
# set up svm
svm = SVMLight(param.cost, base_wdk, lab)
svm.set_linadd_enabled(False)
svm.set_batch_computation_enabled(False)
# normalize cost
norm_c_pos = param.cost / float(len([l for l in data.labels if l==1]))
norm_c_neg = param.cost / float(len([l for l in data.labels if l==-1]))
svm.set_C(norm_c_neg, norm_c_pos)
# start training
svm.train()
# save additional information
self.additional_information["svm objective"] = svm.get_objective()
self.additional_information["num sv"] = svm.get_num_support_vectors()
#self.additional_information["distances"] = distances
self.additional_information["similarities"] = similarities
# wrap up predictors
svms = {}
#.........这里部分代码省略.........
示例6: test_data
# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import set_batch_computation_enabled [as 别名]
#.........这里部分代码省略.........
taxonomy = shogun_factory.create_taxonomy(mss.taxonomy.data)
support = numpy.linspace(0, 100, 4)
distances = [[0, 1, 2, 2], [1, 0, 2, 2], [2, 2, 0, 1], [2, 2, 1, 0]]
# create tree normalizer
tree_normalizer = MultitaskKernelPlifNormalizer(support, data.task_vector_names)
task_names = data.get_task_names()
FACTOR = 1.0
# init gamma matrix
gammas = numpy.zeros((data.get_num_tasks(), data.get_num_tasks()))
for t1_name in task_names:
for t2_name in task_names:
similarity = taxonomy.compute_node_similarity(taxonomy.get_id(t1_name), taxonomy.get_id(t2_name))
gammas[data.name_to_id(t1_name), data.name_to_id(t2_name)] = similarity
helper.save("/tmp/gammas", gammas)
gammas = gammas * FACTOR
cost = param.cost * numpy.sqrt(FACTOR)
print gammas
##########
# regular normalizer
normalizer = MultitaskKernelNormalizer(data.task_vector_nums)
for t1_name in task_names:
for t2_name in task_names:
similarity = gammas[data.name_to_id(t1_name), data.name_to_id(t2_name)]
normalizer.set_task_similarity(data.name_to_id(t1_name), data.name_to_id(t2_name), similarity)
##################################################################
# Train SVMs
##################################################################
# create shogun objects
wdk_tree = shogun_factory.create_kernel(data.examples, param)
lab = shogun_factory.create_labels(data.labels)
wdk_tree.set_normalizer(tree_normalizer)
wdk_tree.init_normalizer()
print "--->",wdk_tree.get_normalizer().get_name()
svm_tree = SVMLight(cost, wdk_tree, lab)
svm_tree.set_linadd_enabled(False)
svm_tree.set_batch_computation_enabled(False)
svm_tree.train()
del wdk_tree
del tree_normalizer
print "finished training tree-norm SVM:", svm_tree.get_objective()
wdk = shogun_factory.create_kernel(data.examples, param)
wdk.set_normalizer(normalizer)
wdk.init_normalizer()
print "--->",wdk.get_normalizer().get_name()
svm = SVMLight(cost, wdk, lab)
svm.set_linadd_enabled(False)
svm.set_batch_computation_enabled(False)
svm.train()
print "finished training manually set SVM:", svm.get_objective()
alphas_tree = svm_tree.get_alphas()
alphas = svm.get_alphas()
assert(len(alphas_tree)==len(alphas))
for i in xrange(len(alphas)):
assert(abs(alphas_tree[i] - alphas[i]) < 0.0001)
print "success: all alphas are the same"
示例7: _train
# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import set_batch_computation_enabled [as 别名]
def _train(self, train_data, param):
"""
training procedure using training examples and labels
@param train_data: Data relevant to SVM training
@type train_data: dict<str, list<instances> >
@param param: Parameters for the training procedure
@type param: ParameterSvm
"""
# merge data sets
data = PreparedMultitaskData(train_data, shuffle=False)
# create shogun data objects
base_wdk = shogun_factory.create_kernel(data.examples, param)
lab = shogun_factory.create_labels(data.labels)
# set normalizer
normalizer = MultitaskKernelNormalizer(data.task_vector_nums)
########################################################
print "creating a kernel for each node:"
########################################################
# init seq handler
task_kernel = SequencesHandlerRbf(1, param.base_similarity, data.get_task_names(), param.flags["wdk_rbf_on"])
similarities = numpy.zeros((data.get_num_tasks(), data.get_num_tasks()))
# convert distance to similarity
for task_name_lhs in data.get_task_names():
for task_name_rhs in data.get_task_names():
# convert similarity with simple transformation
similarity = task_kernel.get_similarity(task_name_lhs, task_name_rhs)
print similarity
print "similarity (%s,%s)=%f" % (task_name_lhs, task_name_rhs, similarity)
normalizer.set_task_similarity(data.name_to_id(task_name_lhs), data.name_to_id(task_name_rhs), similarity)
# save for later
similarities[data.name_to_id(task_name_lhs),data.name_to_id(task_name_rhs)] = similarity
# set normalizer
base_wdk.set_normalizer(normalizer)
base_wdk.init_normalizer()
# set up svm
svm = SVMLight(param.cost, base_wdk, lab)
svm.set_linadd_enabled(False)
svm.set_batch_computation_enabled(False)
# normalize cost
norm_c_pos = param.cost / float(len([l for l in data.labels if l==1]))
norm_c_neg = param.cost / float(len([l for l in data.labels if l==-1]))
svm.set_C(norm_c_neg, norm_c_pos)
# start training
svm.train()
# save additional information
self.additional_information["svm objective"] = svm.get_objective()
self.additional_information["num sv"] = svm.get_num_support_vectors()
#self.additional_information["distances"] = distances
self.additional_information["similarities"] = similarities
# wrap up predictors
svms = {}
# use a reference to the same svm several times
for task_name in data.get_task_names():
task_num = data.name_to_id(task_name)
# save svm and task_num
svms[task_name] = (task_num, param, svm)
return svms