当前位置: 首页>>代码示例>>Python>>正文


Python SVMLight.get_objective方法代码示例

本文整理汇总了Python中shogun.Classifier.SVMLight.get_objective方法的典型用法代码示例。如果您正苦于以下问题:Python SVMLight.get_objective方法的具体用法?Python SVMLight.get_objective怎么用?Python SVMLight.get_objective使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在shogun.Classifier.SVMLight的用法示例。


在下文中一共展示了SVMLight.get_objective方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: SVMLight

# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import get_objective [as 别名]
wdk_tree.set_normalizer(tree_normalizer)
wdk_tree.init_normalizer()

print "--->",wdk_tree.get_normalizer().get_name()

svm_tree = SVMLight(cost, wdk_tree, lab)
svm_tree.set_linadd_enabled(False)
svm_tree.set_batch_computation_enabled(False)

svm_tree.train()

del wdk_tree
del tree_normalizer

print "finished training tree-norm SVM:", svm_tree.get_objective()


wdk = shogun_factory.create_kernel(data.examples, param)
wdk.set_normalizer(normalizer)
wdk.init_normalizer()

print "--->",wdk.get_normalizer().get_name()

svm = SVMLight(cost, wdk, lab)
svm.set_linadd_enabled(False)
svm.set_batch_computation_enabled(False)

svm.train()

print "finished training manually set SVM:", svm.get_objective()
开发者ID:cwidmer,项目名称:multitask,代码行数:32,代码来源:debug_multitask_kernel_tree.py

示例2: test_data

# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import get_objective [as 别名]

#.........这里部分代码省略.........
    taxonomy = shogun_factory.create_taxonomy(mss.taxonomy.data)
    
    
    support = numpy.linspace(0, 100, 4)
    
    
    distances = [[0, 1, 2, 2], [1, 0, 2, 2], [2, 2, 0, 1], [2, 2, 1, 0]]
    
    # create tree normalizer 
    tree_normalizer = MultitaskKernelPlifNormalizer(support, data.task_vector_names)
    
    
    
    
    task_names = data.get_task_names()
    
    
    FACTOR = 1.0
    
    
    # init gamma matrix
    gammas = numpy.zeros((data.get_num_tasks(), data.get_num_tasks()))
    
    for t1_name in task_names:
        for t2_name in task_names:
            
            similarity = taxonomy.compute_node_similarity(taxonomy.get_id(t1_name), taxonomy.get_id(t2_name))        
            gammas[data.name_to_id(t1_name), data.name_to_id(t2_name)] = similarity
    
    helper.save("/tmp/gammas", gammas)
    
    
    gammas = gammas * FACTOR
    
    cost = param.cost * numpy.sqrt(FACTOR) 
    
    print gammas
    
    
    ##########
    # regular normalizer
    
    normalizer = MultitaskKernelNormalizer(data.task_vector_nums)
    
    for t1_name in task_names:
        for t2_name in task_names:
                    
            similarity = gammas[data.name_to_id(t1_name), data.name_to_id(t2_name)]
            normalizer.set_task_similarity(data.name_to_id(t1_name), data.name_to_id(t2_name), similarity)
    
                
    ##################################################################
    # Train SVMs
    ##################################################################
    
    # create shogun objects
    wdk_tree = shogun_factory.create_kernel(data.examples, param)
    lab = shogun_factory.create_labels(data.labels)
    
    wdk_tree.set_normalizer(tree_normalizer)
    wdk_tree.init_normalizer()
    
    print "--->",wdk_tree.get_normalizer().get_name()
    
    svm_tree = SVMLight(cost, wdk_tree, lab)
    svm_tree.set_linadd_enabled(False)
    svm_tree.set_batch_computation_enabled(False)
    
    svm_tree.train()
    
    del wdk_tree
    del tree_normalizer
    
    print "finished training tree-norm SVM:", svm_tree.get_objective()
    
    
    wdk = shogun_factory.create_kernel(data.examples, param)
    wdk.set_normalizer(normalizer)
    wdk.init_normalizer()
    
    print "--->",wdk.get_normalizer().get_name()
    
    svm = SVMLight(cost, wdk, lab)
    svm.set_linadd_enabled(False)
    svm.set_batch_computation_enabled(False)
    
    svm.train()
    
    print "finished training manually set SVM:", svm.get_objective()
    
    
    alphas_tree = svm_tree.get_alphas()
    alphas = svm.get_alphas()
    
    assert(len(alphas_tree)==len(alphas))
    
    for i in xrange(len(alphas)):
        assert(abs(alphas_tree[i] - alphas[i]) < 0.0001)
        
    print "success: all alphas are the same"
开发者ID:cwidmer,项目名称:multitask,代码行数:104,代码来源:debug_multitask_kernel_plif.py

示例3: _train

# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import get_objective [as 别名]
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """


        assert(param.base_similarity >= 1)
        
        # merge data sets
        data = PreparedMultitaskData(train_data, shuffle=False)
        
        
        # create shogun data objects
        base_wdk = shogun_factory.create_kernel(data.examples, param)
        lab = shogun_factory.create_labels(data.labels)

        # set normalizer
        normalizer = MultitaskKernelNormalizer(data.task_vector_nums)
        
        # load data
        #f = file("/fml/ag-raetsch/home/cwidmer/Documents/phd/projects/multitask/data/mhc/MHC_Distanzen/MHC_Distanzen/ALL_PseudoSeq_BlosumEnc_pearson.txt")
        f = file("/fml/ag-raetsch/home/cwidmer/Documents/phd/projects/multitask/data/mhc/MHC_Distanzen/MHC_Distanzen/All_PseudoSeq_Hamming.txt")
        #f = file("/fml/ag-raetsch/home/cwidmer/Documents/phd/projects/multitask/data/mhc/MHC_Distanzen/MHC_Distanzen/ALL_PseudoSeq_BlosumEnc_euklid.txt")
        #f = file("/fml/ag-raetsch/home/cwidmer/Documents/phd/projects/multitask/data/mhc/MHC_Distanzen/MHC_Distanzen/ALL_RAxML.txt")
        
        num_lines = int(f.readline().strip())
        task_distances = numpy.zeros((num_lines, num_lines))
        name_to_id = {}
        for (i, line) in enumerate(f):
            tokens = line.strip().split("\t")
            name = str(tokens[0])
            name_to_id[name] = i
            entry = numpy.array([v for (j,v) in enumerate(tokens) if j!=0])
            assert len(entry)==num_lines, "len_entry %i, num_lines %i" % (len(entry), num_lines)
            task_distances[i,:] = entry
            
        
        # cut relevant submatrix
        active_ids = [name_to_id[name] for name in data.get_task_names()] 
        tmp_distances = task_distances[active_ids, :]
        tmp_distances = tmp_distances[:, active_ids]
        print "distances ", tmp_distances.shape

        
        # normalize distances
        task_distances = task_distances / numpy.max(tmp_distances)
        
        
        similarities = numpy.zeros((data.get_num_tasks(), data.get_num_tasks()))
                                
        
        # convert distance to similarity
        for task_name_lhs in data.get_task_names():
            for task_name_rhs in data.get_task_names():
                
                
                # convert similarity with simple transformation
                similarity = param.base_similarity - task_distances[name_to_id[task_name_lhs], name_to_id[task_name_rhs]]
                normalizer.set_task_similarity(data.name_to_id(task_name_lhs), data.name_to_id(task_name_rhs), similarity)
                
                # save for later
                similarities[data.name_to_id(task_name_lhs),data.name_to_id(task_name_rhs)] = similarity
                
                
        # set normalizer                
        base_wdk.set_normalizer(normalizer)
        base_wdk.init_normalizer()
        

        # set up svm
        svm = SVMLight(param.cost, base_wdk, lab)
        svm.set_linadd_enabled(False)
        svm.set_batch_computation_enabled(False)
        
        
        # normalize cost
        norm_c_pos = param.cost / float(len([l for l in data.labels if l==1]))
        norm_c_neg = param.cost / float(len([l for l in data.labels if l==-1]))
        
        svm.set_C(norm_c_neg, norm_c_pos)
        
        
        # start training
        svm.train()


        # save additional information
        self.additional_information["svm objective"] = svm.get_objective()
        self.additional_information["num sv"] = svm.get_num_support_vectors()
        #self.additional_information["distances"] = distances
        self.additional_information["similarities"] = similarities


        # wrap up predictors
        svms = {}
#.........这里部分代码省略.........
开发者ID:cwidmer,项目名称:multitask,代码行数:103,代码来源:method_mhc_simple.py

示例4: StringCharFeatures

# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import get_objective [as 别名]
labels[8] = 1
labels[19] = 1


feat = StringCharFeatures(DNA)
feat.set_features(examples)
wdk = WeightedDegreeStringKernel(feat, feat, 1)
lab = Labels(numpy.array(labels))


svm = SVMLight(1, wdk, lab)
svm.train()

svm.set_shrinking_enabled(False)

print "simple svm", svm.get_objective()

print "len(examples)", len(examples)

print "##############"


#print "##############"
#print "svm light"

#svm_light = SVMLight(1.0,wdk,lab)

#svm_light.train()


#print "svmlight objective", svm_light.get_objective()
开发者ID:cwidmer,项目名称:multitask,代码行数:33,代码来源:debug_shogun_trunk.py

示例5: serialization_svmlight_modular

# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import get_objective [as 别名]

#.........这里部分代码省略.........
	import inspect


	def save(filename, myobj):
		"""
		save object to file using pickle
		
		@param filename: name of destination file
		@type filename: str
		@param myobj: object to save (has to be pickleable)
		@type myobj: obj
		"""

		try:
			f = bz2.BZ2File(filename, 'wb')
		except IOError as details:
			sys.stderr.write('File ' + filename + ' cannot be written\n')
			sys.stderr.write(details)
			return

		pickle.dump(myobj, f, protocol=2)
		f.close()



	def load(filename):
		"""
		Load from filename using pickle
		
		@param filename: name of file to load from
		@type filename: str
		"""
		
		try:
			f = bz2.BZ2File(filename, 'rb')
		except IOError as details:
			sys.stderr.write('File ' + filename + ' cannot be read\n')
			sys.stderr.write(details)
			return

		myobj = pickle.load(f)
		f.close()
		return myobj


	##################################################

	seed(17)
	traindata_real=concatenate((randn(2,num)-dist, randn(2,num)+dist), axis=1)
	testdata_real=concatenate((randn(2,num)-dist, randn(2,num)+dist), axis=1);

	trainlab=concatenate((-ones(num), ones(num)));
	testlab=concatenate((-ones(num), ones(num)));

	feats_train=RealFeatures(traindata_real);
	feats_test=RealFeatures(testdata_real);
	kernel=GaussianKernel(feats_train, feats_train, width);
	#kernel.io.set_loglevel(MSG_DEBUG)

	labels=BinaryLabels(trainlab);

	svm=SVMLight(C, kernel, labels)
	svm.train()
	#svm.io.set_loglevel(MSG_DEBUG)

	##################################################

	#print("labels:")
	#print(pickle.dumps(labels))
	#
	#print("features")
	#print(pickle.dumps(feats_train))
	#
	#print("kernel")
	#print(pickle.dumps(kernel))
	#
	#print("svm")
	#print(pickle.dumps(svm))
	#
	#print("#################################")

	fn = "serialized_svm.bz2"
	#print("serializing SVM to file", fn)

	save(fn, svm)

	#print("#################################")

	#print("unserializing SVM")
	svm2 = load(fn)


	#print("#################################")
	#print("comparing training")

	svm2.train()

	#print("objective before serialization:", svm.get_objective())
	#print("objective after serialization:", svm2.get_objective())
	return svm, svm.get_objective(), svm2, svm2.get_objective()
开发者ID:coodoing,项目名称:shogun,代码行数:104,代码来源:serialization_svmlight_modular.py

示例6: StringCharFeatures

# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import get_objective [as 别名]
labels_presvm[19] = 1


feat_presvm = StringCharFeatures(DNA)
feat_presvm.set_features(examples_presvm)
wdk_presvm = WeightedDegreeStringKernel(feat_presvm, feat_presvm, 1)
lab_presvm = Labels(numpy.array(labels_presvm))


presvm = SVMLight(1, wdk_presvm, lab_presvm)
presvm.train()

presvm2 = LibSVM(1, wdk_presvm, lab_presvm)
presvm2.train()

print "svmlight", presvm.get_objective()
print "libsvm", presvm2.get_objective()

assert(abs(presvm.get_objective() - presvm2.get_objective())<= 0.001)

print "simple svm", presvm.get_objective()

print "len(examples_presvm)", len(examples_presvm)

print "##############"


#############################################
#    compute linear term manually
#############################################
开发者ID:cwidmer,项目名称:multitask,代码行数:32,代码来源:debug_shogun_dasvm.py

示例7: save

# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import get_objective [as 别名]
	#print pickle.dumps(kernel)
	#
	#print "svm"
	#print pickle.dumps(svm)
	#
	#print "#################################"

	fn = "serialized_svm.bz2"
	#print "serializing SVM to file", fn

	save(fn, svm)

	#print "#################################"

	#print "unserializing SVM"
	svm2 = load(fn)


	#print "#################################"
	#print "comparing training"

	svm2.train()

	#print "objective before serialization:", svm.get_objective()
	#print "objective after serialization:", svm2.get_objective()
	return svm, svm.get_objective(), svm2, svm2.get_objective()

if __name__=='__main__':
	print 'Serialization SVMLight'
	serialization_svmlight_modular(*parameter_list[0])
开发者ID:Anshul-Bansal,项目名称:gsoc,代码行数:32,代码来源:serialization_svmlight_modular.py

示例8: _inner_train

# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import get_objective [as 别名]
    def _inner_train(self, train_data, param):
        """
        perform inner training by processing the tree
        """

        data_keys = []
        # top-down processing of taxonomy


        classifiers = []
        classifier_at_node = {}

        root = param.taxonomy.data

        grey_nodes = [root]
        
        while len(grey_nodes)>0:
           
            node = grey_nodes.pop(0) # pop first item
            
            # enqueue children
            if node.children != None:
                grey_nodes.extend(node.children)
    

    
            #####################################################
            #     init data structures
            #####################################################

            # get data below current node
            data = [train_data[key] for key in node.get_data_keys()]
            
            data_keys.append(node.get_data_keys())
    
            print "data at current level"
            for instance_set in data:        
                print instance_set[0].dataset
            
            
            # initialize containers
            examples = []
            labels = []       
    

            # concatenate data
            for instance_set in data:
      
                print "train split_set:", instance_set[0].dataset.organism
                
                for inst in instance_set:
                    examples.append(inst.example)
                    labels.append(inst.label)
    

            # create shogun data objects
            k = shogun_factory.create_kernel(examples, param)
            lab = shogun_factory.create_labels(labels)


            #####################################################
            #    train weak learners    
            #####################################################
            
            cost = param.cost
            
            # set up svm
            svm = SVMLight(cost, k, lab)
                        
            if param.flags["normalize_cost"]:
                # set class-specific Cs
                norm_c_pos = param.cost / float(len([l for l in labels if l==1]))
                norm_c_neg = param.cost / float(len([l for l in labels if l==-1]))
                svm.set_C(norm_c_neg, norm_c_pos)
            
            
            print "using cost: negative class=%f, positive class=%f" % (norm_c_neg, norm_c_pos) 
            
            # enable output
            svm.io.enable_progress()
            svm.io.set_loglevel(shogun.Classifier.MSG_INFO)
            
            # train
            svm.train()
            
            # append svm object
            classifiers.append(svm)
            classifier_at_node[node.name] = svm                            
            
            # save some information
            self.additional_information[node.name + " svm obj"] = svm.get_objective()
            self.additional_information[node.name + " svm num sv"] = svm.get_num_support_vectors()
            self.additional_information[node.name + " runtime"] = svm.get_runtime()


        return (classifiers, classifier_at_node)
开发者ID:cwidmer,项目名称:multitask,代码行数:98,代码来源:method_hierarchy_boosting.py

示例9: save

# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import get_objective [as 别名]
print "features"
print feats_train.to_string()

print "kernel"
print kernel.to_string()

print "svm"
print svm.to_string()

print "#################################"

fn = "serialized_svm.bz2"
print "serializing SVM to file", fn

save(fn, svm)

print "#################################"

print "unserializing SVM"
svm2 = load(fn)


print "#################################"
print "comparing training"

svm2.train()

print "objective before serialization:", svm.get_objective()
print "objective after serialization:", svm2.get_objective()

开发者ID:memimo,项目名称:shogun-liblinear,代码行数:31,代码来源:serialization_svmlight_modular.py

示例10: _train

# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import get_objective [as 别名]
    def _train(self, train_data, param):
        """
        training procedure using training examples and labels
        
        @param train_data: Data relevant to SVM training
        @type train_data: dict<str, list<instances> >
        @param param: Parameters for the training procedure
        @type param: ParameterSvm
        """
        
          
        # merge data sets
        data = PreparedMultitaskData(train_data, shuffle=False)
        
        
        # create shogun data objects
        base_wdk = shogun_factory.create_kernel(data.examples, param)
        lab = shogun_factory.create_labels(data.labels)

        # set normalizer
        normalizer = MultitaskKernelNormalizer(data.task_vector_nums)

        ########################################################
        print "creating a kernel for each node:"
        ########################################################

        
        # init seq handler 
        task_kernel = SequencesHandlerRbf(1, param.base_similarity, data.get_task_names(), param.flags["wdk_rbf_on"])
        similarities = numpy.zeros((data.get_num_tasks(), data.get_num_tasks()))
        
        # convert distance to similarity
        for task_name_lhs in data.get_task_names():
            for task_name_rhs in data.get_task_names():
                
                
                 
                
                # convert similarity with simple transformation
                similarity = task_kernel.get_similarity(task_name_lhs, task_name_rhs)
                
                print similarity
                
                print "similarity (%s,%s)=%f" % (task_name_lhs, task_name_rhs, similarity)
                
                normalizer.set_task_similarity(data.name_to_id(task_name_lhs), data.name_to_id(task_name_rhs), similarity)
                
                # save for later
                similarities[data.name_to_id(task_name_lhs),data.name_to_id(task_name_rhs)] = similarity
                
                
        # set normalizer                
        base_wdk.set_normalizer(normalizer)
        base_wdk.init_normalizer()
        

        # set up svm
        svm = SVMLight(param.cost, base_wdk, lab)
        svm.set_linadd_enabled(False)
        svm.set_batch_computation_enabled(False)
        
        
        # normalize cost
        norm_c_pos = param.cost / float(len([l for l in data.labels if l==1]))
        norm_c_neg = param.cost / float(len([l for l in data.labels if l==-1]))
        
        svm.set_C(norm_c_neg, norm_c_pos)
        
        
        # start training
        svm.train()


        # save additional information
        self.additional_information["svm objective"] = svm.get_objective()
        self.additional_information["num sv"] = svm.get_num_support_vectors()
        #self.additional_information["distances"] = distances
        self.additional_information["similarities"] = similarities


        # wrap up predictors
        svms = {}
        
        # use a reference to the same svm several times
        for task_name in data.get_task_names():
            
            task_num = data.name_to_id(task_name)
            
            # save svm and task_num
            svms[task_name] = (task_num, param, svm)

        return svms
开发者ID:cwidmer,项目名称:multitask,代码行数:94,代码来源:method_mhc_rbf.py

示例11: serialization_svmlight_modular

# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import get_objective [as 别名]
def serialization_svmlight_modular (num, dist, width, C):
    from shogun.IO import MSG_DEBUG
    from shogun.Features import RealFeatures, BinaryLabels, DNA, Alphabet
    from shogun.Kernel import WeightedDegreeStringKernel, GaussianKernel
    from shogun.Classifier import SVMLight
    from numpy import concatenate, ones
    from numpy.random import randn, seed

    import sys
    import types
    import random
    import bz2
    try:
        import cPickle as pickle
    except ImportError:
        import pickle as pickle
    import inspect


    def save(filename, myobj):
        """
        save object to file using pickle

        @param filename: name of destination file
        @type filename: str
        @param myobj: object to save (has to be pickleable)
        @type myobj: obj
        """

        try:
            f = bz2.BZ2File(filename, 'wb')
        except IOError as details:
            sys.stderr.write('File ' + filename + ' cannot be written\n')
            sys.stderr.write(details)
            return

        pickle.dump(myobj, f, protocol=2)
        f.close()



    def load(filename):
        """
        Load from filename using pickle

        @param filename: name of file to load from
        @type filename: str
        """

        try:
            f = bz2.BZ2File(filename, 'rb')
        except IOError as details:
            sys.stderr.write('File ' + filename + ' cannot be read\n')
            sys.stderr.write(details)
            return

        myobj = pickle.load(f)
        f.close()
        return myobj


    ##################################################
    # set up toy data and svm

    traindata_real = concatenate((randn(2,num)-dist, randn(2,num)+dist), axis=1)
    testdata_real = concatenate((randn(2,num)-dist, randn(2,num)+dist), axis=1);

    trainlab = concatenate((-ones(num), ones(num)));
    testlab = concatenate((-ones(num), ones(num)));

    feats_train = RealFeatures(traindata_real);
    feats_test = RealFeatures(testdata_real);
    kernel = GaussianKernel(feats_train, feats_train, width);
    #kernel.io.set_loglevel(MSG_DEBUG)

    labels = BinaryLabels(trainlab);

    svm = SVMLight(C, kernel, labels)
    svm.train()
    #svm.io.set_loglevel(MSG_DEBUG)

    ##################################################
    # serialize to file

    fn = "serialized_svm.bz2"
    print("serializing SVM to file", fn)
    save(fn, svm)

    ##################################################
    # unserialize and sanity check

    print("unserializing SVM")
    svm2 = load(fn)

    print("comparing objectives")

    svm2.train()

    print("objective before serialization:", svm.get_objective())
    print("objective after serialization:", svm2.get_objective())
#.........这里部分代码省略.........
开发者ID:AlexBinder,项目名称:shogun,代码行数:103,代码来源:serialization_svmlight_modular.py

示例12: SVMLight

# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import get_objective [as 别名]
        else:
            normalizer.set_task_similarity(i,j, 1.0)


base_wdk.set_normalizer(normalizer)

print base_wdk.get_kernel_matrix()
print "--->",base_wdk.get_normalizer().get_name()

svm = SVMLight(1, base_wdk, lab)
svm.set_linadd_enabled(False)
svm.set_batch_computation_enabled(False)

svm.train(feat)

print "interally modified kernel. objective:", svm.get_objective()



##################################################################
# regular SVM
##################################################################


wdk = WeightedDegreeStringKernel(feat, feat, 1)

normalizer = IdentityKernelNormalizer()
wdk.set_normalizer(normalizer)

svm = SVMLight(1, wdk, lab)
svm.set_linadd_enabled(False)
开发者ID:cwidmer,项目名称:multitask,代码行数:33,代码来源:debug_multitask_kernel.py


注:本文中的shogun.Classifier.SVMLight.get_objective方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。