本文整理汇总了Python中shogun.Classifier.SVMLight.get_objective方法的典型用法代码示例。如果您正苦于以下问题:Python SVMLight.get_objective方法的具体用法?Python SVMLight.get_objective怎么用?Python SVMLight.get_objective使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类shogun.Classifier.SVMLight
的用法示例。
在下文中一共展示了SVMLight.get_objective方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: SVMLight
# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import get_objective [as 别名]
wdk_tree.set_normalizer(tree_normalizer)
wdk_tree.init_normalizer()
print "--->",wdk_tree.get_normalizer().get_name()
svm_tree = SVMLight(cost, wdk_tree, lab)
svm_tree.set_linadd_enabled(False)
svm_tree.set_batch_computation_enabled(False)
svm_tree.train()
del wdk_tree
del tree_normalizer
print "finished training tree-norm SVM:", svm_tree.get_objective()
wdk = shogun_factory.create_kernel(data.examples, param)
wdk.set_normalizer(normalizer)
wdk.init_normalizer()
print "--->",wdk.get_normalizer().get_name()
svm = SVMLight(cost, wdk, lab)
svm.set_linadd_enabled(False)
svm.set_batch_computation_enabled(False)
svm.train()
print "finished training manually set SVM:", svm.get_objective()
示例2: test_data
# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import get_objective [as 别名]
#.........这里部分代码省略.........
taxonomy = shogun_factory.create_taxonomy(mss.taxonomy.data)
support = numpy.linspace(0, 100, 4)
distances = [[0, 1, 2, 2], [1, 0, 2, 2], [2, 2, 0, 1], [2, 2, 1, 0]]
# create tree normalizer
tree_normalizer = MultitaskKernelPlifNormalizer(support, data.task_vector_names)
task_names = data.get_task_names()
FACTOR = 1.0
# init gamma matrix
gammas = numpy.zeros((data.get_num_tasks(), data.get_num_tasks()))
for t1_name in task_names:
for t2_name in task_names:
similarity = taxonomy.compute_node_similarity(taxonomy.get_id(t1_name), taxonomy.get_id(t2_name))
gammas[data.name_to_id(t1_name), data.name_to_id(t2_name)] = similarity
helper.save("/tmp/gammas", gammas)
gammas = gammas * FACTOR
cost = param.cost * numpy.sqrt(FACTOR)
print gammas
##########
# regular normalizer
normalizer = MultitaskKernelNormalizer(data.task_vector_nums)
for t1_name in task_names:
for t2_name in task_names:
similarity = gammas[data.name_to_id(t1_name), data.name_to_id(t2_name)]
normalizer.set_task_similarity(data.name_to_id(t1_name), data.name_to_id(t2_name), similarity)
##################################################################
# Train SVMs
##################################################################
# create shogun objects
wdk_tree = shogun_factory.create_kernel(data.examples, param)
lab = shogun_factory.create_labels(data.labels)
wdk_tree.set_normalizer(tree_normalizer)
wdk_tree.init_normalizer()
print "--->",wdk_tree.get_normalizer().get_name()
svm_tree = SVMLight(cost, wdk_tree, lab)
svm_tree.set_linadd_enabled(False)
svm_tree.set_batch_computation_enabled(False)
svm_tree.train()
del wdk_tree
del tree_normalizer
print "finished training tree-norm SVM:", svm_tree.get_objective()
wdk = shogun_factory.create_kernel(data.examples, param)
wdk.set_normalizer(normalizer)
wdk.init_normalizer()
print "--->",wdk.get_normalizer().get_name()
svm = SVMLight(cost, wdk, lab)
svm.set_linadd_enabled(False)
svm.set_batch_computation_enabled(False)
svm.train()
print "finished training manually set SVM:", svm.get_objective()
alphas_tree = svm_tree.get_alphas()
alphas = svm.get_alphas()
assert(len(alphas_tree)==len(alphas))
for i in xrange(len(alphas)):
assert(abs(alphas_tree[i] - alphas[i]) < 0.0001)
print "success: all alphas are the same"
示例3: _train
# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import get_objective [as 别名]
def _train(self, train_data, param):
"""
training procedure using training examples and labels
@param train_data: Data relevant to SVM training
@type train_data: dict<str, list<instances> >
@param param: Parameters for the training procedure
@type param: ParameterSvm
"""
assert(param.base_similarity >= 1)
# merge data sets
data = PreparedMultitaskData(train_data, shuffle=False)
# create shogun data objects
base_wdk = shogun_factory.create_kernel(data.examples, param)
lab = shogun_factory.create_labels(data.labels)
# set normalizer
normalizer = MultitaskKernelNormalizer(data.task_vector_nums)
# load data
#f = file("/fml/ag-raetsch/home/cwidmer/Documents/phd/projects/multitask/data/mhc/MHC_Distanzen/MHC_Distanzen/ALL_PseudoSeq_BlosumEnc_pearson.txt")
f = file("/fml/ag-raetsch/home/cwidmer/Documents/phd/projects/multitask/data/mhc/MHC_Distanzen/MHC_Distanzen/All_PseudoSeq_Hamming.txt")
#f = file("/fml/ag-raetsch/home/cwidmer/Documents/phd/projects/multitask/data/mhc/MHC_Distanzen/MHC_Distanzen/ALL_PseudoSeq_BlosumEnc_euklid.txt")
#f = file("/fml/ag-raetsch/home/cwidmer/Documents/phd/projects/multitask/data/mhc/MHC_Distanzen/MHC_Distanzen/ALL_RAxML.txt")
num_lines = int(f.readline().strip())
task_distances = numpy.zeros((num_lines, num_lines))
name_to_id = {}
for (i, line) in enumerate(f):
tokens = line.strip().split("\t")
name = str(tokens[0])
name_to_id[name] = i
entry = numpy.array([v for (j,v) in enumerate(tokens) if j!=0])
assert len(entry)==num_lines, "len_entry %i, num_lines %i" % (len(entry), num_lines)
task_distances[i,:] = entry
# cut relevant submatrix
active_ids = [name_to_id[name] for name in data.get_task_names()]
tmp_distances = task_distances[active_ids, :]
tmp_distances = tmp_distances[:, active_ids]
print "distances ", tmp_distances.shape
# normalize distances
task_distances = task_distances / numpy.max(tmp_distances)
similarities = numpy.zeros((data.get_num_tasks(), data.get_num_tasks()))
# convert distance to similarity
for task_name_lhs in data.get_task_names():
for task_name_rhs in data.get_task_names():
# convert similarity with simple transformation
similarity = param.base_similarity - task_distances[name_to_id[task_name_lhs], name_to_id[task_name_rhs]]
normalizer.set_task_similarity(data.name_to_id(task_name_lhs), data.name_to_id(task_name_rhs), similarity)
# save for later
similarities[data.name_to_id(task_name_lhs),data.name_to_id(task_name_rhs)] = similarity
# set normalizer
base_wdk.set_normalizer(normalizer)
base_wdk.init_normalizer()
# set up svm
svm = SVMLight(param.cost, base_wdk, lab)
svm.set_linadd_enabled(False)
svm.set_batch_computation_enabled(False)
# normalize cost
norm_c_pos = param.cost / float(len([l for l in data.labels if l==1]))
norm_c_neg = param.cost / float(len([l for l in data.labels if l==-1]))
svm.set_C(norm_c_neg, norm_c_pos)
# start training
svm.train()
# save additional information
self.additional_information["svm objective"] = svm.get_objective()
self.additional_information["num sv"] = svm.get_num_support_vectors()
#self.additional_information["distances"] = distances
self.additional_information["similarities"] = similarities
# wrap up predictors
svms = {}
#.........这里部分代码省略.........
示例4: StringCharFeatures
# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import get_objective [as 别名]
labels[8] = 1
labels[19] = 1
feat = StringCharFeatures(DNA)
feat.set_features(examples)
wdk = WeightedDegreeStringKernel(feat, feat, 1)
lab = Labels(numpy.array(labels))
svm = SVMLight(1, wdk, lab)
svm.train()
svm.set_shrinking_enabled(False)
print "simple svm", svm.get_objective()
print "len(examples)", len(examples)
print "##############"
#print "##############"
#print "svm light"
#svm_light = SVMLight(1.0,wdk,lab)
#svm_light.train()
#print "svmlight objective", svm_light.get_objective()
示例5: serialization_svmlight_modular
# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import get_objective [as 别名]
#.........这里部分代码省略.........
import inspect
def save(filename, myobj):
"""
save object to file using pickle
@param filename: name of destination file
@type filename: str
@param myobj: object to save (has to be pickleable)
@type myobj: obj
"""
try:
f = bz2.BZ2File(filename, 'wb')
except IOError as details:
sys.stderr.write('File ' + filename + ' cannot be written\n')
sys.stderr.write(details)
return
pickle.dump(myobj, f, protocol=2)
f.close()
def load(filename):
"""
Load from filename using pickle
@param filename: name of file to load from
@type filename: str
"""
try:
f = bz2.BZ2File(filename, 'rb')
except IOError as details:
sys.stderr.write('File ' + filename + ' cannot be read\n')
sys.stderr.write(details)
return
myobj = pickle.load(f)
f.close()
return myobj
##################################################
seed(17)
traindata_real=concatenate((randn(2,num)-dist, randn(2,num)+dist), axis=1)
testdata_real=concatenate((randn(2,num)-dist, randn(2,num)+dist), axis=1);
trainlab=concatenate((-ones(num), ones(num)));
testlab=concatenate((-ones(num), ones(num)));
feats_train=RealFeatures(traindata_real);
feats_test=RealFeatures(testdata_real);
kernel=GaussianKernel(feats_train, feats_train, width);
#kernel.io.set_loglevel(MSG_DEBUG)
labels=BinaryLabels(trainlab);
svm=SVMLight(C, kernel, labels)
svm.train()
#svm.io.set_loglevel(MSG_DEBUG)
##################################################
#print("labels:")
#print(pickle.dumps(labels))
#
#print("features")
#print(pickle.dumps(feats_train))
#
#print("kernel")
#print(pickle.dumps(kernel))
#
#print("svm")
#print(pickle.dumps(svm))
#
#print("#################################")
fn = "serialized_svm.bz2"
#print("serializing SVM to file", fn)
save(fn, svm)
#print("#################################")
#print("unserializing SVM")
svm2 = load(fn)
#print("#################################")
#print("comparing training")
svm2.train()
#print("objective before serialization:", svm.get_objective())
#print("objective after serialization:", svm2.get_objective())
return svm, svm.get_objective(), svm2, svm2.get_objective()
示例6: StringCharFeatures
# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import get_objective [as 别名]
labels_presvm[19] = 1
feat_presvm = StringCharFeatures(DNA)
feat_presvm.set_features(examples_presvm)
wdk_presvm = WeightedDegreeStringKernel(feat_presvm, feat_presvm, 1)
lab_presvm = Labels(numpy.array(labels_presvm))
presvm = SVMLight(1, wdk_presvm, lab_presvm)
presvm.train()
presvm2 = LibSVM(1, wdk_presvm, lab_presvm)
presvm2.train()
print "svmlight", presvm.get_objective()
print "libsvm", presvm2.get_objective()
assert(abs(presvm.get_objective() - presvm2.get_objective())<= 0.001)
print "simple svm", presvm.get_objective()
print "len(examples_presvm)", len(examples_presvm)
print "##############"
#############################################
# compute linear term manually
#############################################
示例7: save
# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import get_objective [as 别名]
#print pickle.dumps(kernel)
#
#print "svm"
#print pickle.dumps(svm)
#
#print "#################################"
fn = "serialized_svm.bz2"
#print "serializing SVM to file", fn
save(fn, svm)
#print "#################################"
#print "unserializing SVM"
svm2 = load(fn)
#print "#################################"
#print "comparing training"
svm2.train()
#print "objective before serialization:", svm.get_objective()
#print "objective after serialization:", svm2.get_objective()
return svm, svm.get_objective(), svm2, svm2.get_objective()
if __name__=='__main__':
print 'Serialization SVMLight'
serialization_svmlight_modular(*parameter_list[0])
示例8: _inner_train
# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import get_objective [as 别名]
def _inner_train(self, train_data, param):
"""
perform inner training by processing the tree
"""
data_keys = []
# top-down processing of taxonomy
classifiers = []
classifier_at_node = {}
root = param.taxonomy.data
grey_nodes = [root]
while len(grey_nodes)>0:
node = grey_nodes.pop(0) # pop first item
# enqueue children
if node.children != None:
grey_nodes.extend(node.children)
#####################################################
# init data structures
#####################################################
# get data below current node
data = [train_data[key] for key in node.get_data_keys()]
data_keys.append(node.get_data_keys())
print "data at current level"
for instance_set in data:
print instance_set[0].dataset
# initialize containers
examples = []
labels = []
# concatenate data
for instance_set in data:
print "train split_set:", instance_set[0].dataset.organism
for inst in instance_set:
examples.append(inst.example)
labels.append(inst.label)
# create shogun data objects
k = shogun_factory.create_kernel(examples, param)
lab = shogun_factory.create_labels(labels)
#####################################################
# train weak learners
#####################################################
cost = param.cost
# set up svm
svm = SVMLight(cost, k, lab)
if param.flags["normalize_cost"]:
# set class-specific Cs
norm_c_pos = param.cost / float(len([l for l in labels if l==1]))
norm_c_neg = param.cost / float(len([l for l in labels if l==-1]))
svm.set_C(norm_c_neg, norm_c_pos)
print "using cost: negative class=%f, positive class=%f" % (norm_c_neg, norm_c_pos)
# enable output
svm.io.enable_progress()
svm.io.set_loglevel(shogun.Classifier.MSG_INFO)
# train
svm.train()
# append svm object
classifiers.append(svm)
classifier_at_node[node.name] = svm
# save some information
self.additional_information[node.name + " svm obj"] = svm.get_objective()
self.additional_information[node.name + " svm num sv"] = svm.get_num_support_vectors()
self.additional_information[node.name + " runtime"] = svm.get_runtime()
return (classifiers, classifier_at_node)
示例9: save
# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import get_objective [as 别名]
print "features"
print feats_train.to_string()
print "kernel"
print kernel.to_string()
print "svm"
print svm.to_string()
print "#################################"
fn = "serialized_svm.bz2"
print "serializing SVM to file", fn
save(fn, svm)
print "#################################"
print "unserializing SVM"
svm2 = load(fn)
print "#################################"
print "comparing training"
svm2.train()
print "objective before serialization:", svm.get_objective()
print "objective after serialization:", svm2.get_objective()
示例10: _train
# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import get_objective [as 别名]
def _train(self, train_data, param):
"""
training procedure using training examples and labels
@param train_data: Data relevant to SVM training
@type train_data: dict<str, list<instances> >
@param param: Parameters for the training procedure
@type param: ParameterSvm
"""
# merge data sets
data = PreparedMultitaskData(train_data, shuffle=False)
# create shogun data objects
base_wdk = shogun_factory.create_kernel(data.examples, param)
lab = shogun_factory.create_labels(data.labels)
# set normalizer
normalizer = MultitaskKernelNormalizer(data.task_vector_nums)
########################################################
print "creating a kernel for each node:"
########################################################
# init seq handler
task_kernel = SequencesHandlerRbf(1, param.base_similarity, data.get_task_names(), param.flags["wdk_rbf_on"])
similarities = numpy.zeros((data.get_num_tasks(), data.get_num_tasks()))
# convert distance to similarity
for task_name_lhs in data.get_task_names():
for task_name_rhs in data.get_task_names():
# convert similarity with simple transformation
similarity = task_kernel.get_similarity(task_name_lhs, task_name_rhs)
print similarity
print "similarity (%s,%s)=%f" % (task_name_lhs, task_name_rhs, similarity)
normalizer.set_task_similarity(data.name_to_id(task_name_lhs), data.name_to_id(task_name_rhs), similarity)
# save for later
similarities[data.name_to_id(task_name_lhs),data.name_to_id(task_name_rhs)] = similarity
# set normalizer
base_wdk.set_normalizer(normalizer)
base_wdk.init_normalizer()
# set up svm
svm = SVMLight(param.cost, base_wdk, lab)
svm.set_linadd_enabled(False)
svm.set_batch_computation_enabled(False)
# normalize cost
norm_c_pos = param.cost / float(len([l for l in data.labels if l==1]))
norm_c_neg = param.cost / float(len([l for l in data.labels if l==-1]))
svm.set_C(norm_c_neg, norm_c_pos)
# start training
svm.train()
# save additional information
self.additional_information["svm objective"] = svm.get_objective()
self.additional_information["num sv"] = svm.get_num_support_vectors()
#self.additional_information["distances"] = distances
self.additional_information["similarities"] = similarities
# wrap up predictors
svms = {}
# use a reference to the same svm several times
for task_name in data.get_task_names():
task_num = data.name_to_id(task_name)
# save svm and task_num
svms[task_name] = (task_num, param, svm)
return svms
示例11: serialization_svmlight_modular
# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import get_objective [as 别名]
def serialization_svmlight_modular (num, dist, width, C):
from shogun.IO import MSG_DEBUG
from shogun.Features import RealFeatures, BinaryLabels, DNA, Alphabet
from shogun.Kernel import WeightedDegreeStringKernel, GaussianKernel
from shogun.Classifier import SVMLight
from numpy import concatenate, ones
from numpy.random import randn, seed
import sys
import types
import random
import bz2
try:
import cPickle as pickle
except ImportError:
import pickle as pickle
import inspect
def save(filename, myobj):
"""
save object to file using pickle
@param filename: name of destination file
@type filename: str
@param myobj: object to save (has to be pickleable)
@type myobj: obj
"""
try:
f = bz2.BZ2File(filename, 'wb')
except IOError as details:
sys.stderr.write('File ' + filename + ' cannot be written\n')
sys.stderr.write(details)
return
pickle.dump(myobj, f, protocol=2)
f.close()
def load(filename):
"""
Load from filename using pickle
@param filename: name of file to load from
@type filename: str
"""
try:
f = bz2.BZ2File(filename, 'rb')
except IOError as details:
sys.stderr.write('File ' + filename + ' cannot be read\n')
sys.stderr.write(details)
return
myobj = pickle.load(f)
f.close()
return myobj
##################################################
# set up toy data and svm
traindata_real = concatenate((randn(2,num)-dist, randn(2,num)+dist), axis=1)
testdata_real = concatenate((randn(2,num)-dist, randn(2,num)+dist), axis=1);
trainlab = concatenate((-ones(num), ones(num)));
testlab = concatenate((-ones(num), ones(num)));
feats_train = RealFeatures(traindata_real);
feats_test = RealFeatures(testdata_real);
kernel = GaussianKernel(feats_train, feats_train, width);
#kernel.io.set_loglevel(MSG_DEBUG)
labels = BinaryLabels(trainlab);
svm = SVMLight(C, kernel, labels)
svm.train()
#svm.io.set_loglevel(MSG_DEBUG)
##################################################
# serialize to file
fn = "serialized_svm.bz2"
print("serializing SVM to file", fn)
save(fn, svm)
##################################################
# unserialize and sanity check
print("unserializing SVM")
svm2 = load(fn)
print("comparing objectives")
svm2.train()
print("objective before serialization:", svm.get_objective())
print("objective after serialization:", svm2.get_objective())
#.........这里部分代码省略.........
示例12: SVMLight
# 需要导入模块: from shogun.Classifier import SVMLight [as 别名]
# 或者: from shogun.Classifier.SVMLight import get_objective [as 别名]
else:
normalizer.set_task_similarity(i,j, 1.0)
base_wdk.set_normalizer(normalizer)
print base_wdk.get_kernel_matrix()
print "--->",base_wdk.get_normalizer().get_name()
svm = SVMLight(1, base_wdk, lab)
svm.set_linadd_enabled(False)
svm.set_batch_computation_enabled(False)
svm.train(feat)
print "interally modified kernel. objective:", svm.get_objective()
##################################################################
# regular SVM
##################################################################
wdk = WeightedDegreeStringKernel(feat, feat, 1)
normalizer = IdentityKernelNormalizer()
wdk.set_normalizer(normalizer)
svm = SVMLight(1, wdk, lab)
svm.set_linadd_enabled(False)