当前位置: 首页>>代码示例>>Python>>正文


Python MarkovModel.train_bw方法代码示例

本文整理汇总了Python中Bio.MarkovModel.train_bw方法的典型用法代码示例。如果您正苦于以下问题:Python MarkovModel.train_bw方法的具体用法?Python MarkovModel.train_bw怎么用?Python MarkovModel.train_bw使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Bio.MarkovModel的用法示例。


在下文中一共展示了MarkovModel.train_bw方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _create_mm

# 需要导入模块: from Bio import MarkovModel [as 别名]
# 或者: from Bio.MarkovModel import train_bw [as 别名]
    def _create_mm(self, motif_num, alphabet):
        try:
            # Only EDeN has original_motives_list
            input_motif = self.original_motives_list[motif_num - 1]
        except AttributeError:
            input_motif = self.motives_list[motif_num - 1]

        headers, instances = [list(x) for x in zip(*input_motif)]

        lengths = [len(instances[i]) for i in range(len(instances))]
        median_len = int(math.ceil(np.median(lengths)))

        # Hidden states for Markov Model
        states = [str(i + 1) for i in range(median_len)]

        print "original samples: %d" % len(instances)
        print "states:", len(states)
        # under sampling
        if (len(instances) * len(states)) > 500:
            samples = 500 / len(states)
            # samples = 50    # fixed sampling
            print 'sample size = %d' % samples
            instances = random.sample(instances, samples)

        instances = random.sample(instances, samples)

        try:
            mm = MarkovModel.train_bw(states=states,
                                      alphabet=alphabet,
                                      training_data=instances)
        except RuntimeError, msg:
            raise RuntimeError("Motif data is too large. " + str(msg))
开发者ID:fabriziocosta,项目名称:pyMotif,代码行数:34,代码来源:utilities.py

示例2: test_train_bw

# 需要导入模块: from Bio import MarkovModel [as 别名]
# 或者: from Bio.MarkovModel import train_bw [as 别名]
    def test_train_bw(self):
        random.seed(0)
        states = ["0", "1", "2", "3"]
        alphabet = ["A", "C", "G", "T"]
        training_data = ["AACCCGGGTTTTTTT", "ACCGTTTTTTT",
                         "ACGGGTTTTTT", "ACCGTTTTTTTT"]

        output_p_initial = array([0.2275677, 0.29655611,
                                  0.24993822, 0.22593797])
        output_p_transition = array(
            [[5.16919807e-001, 3.65825814e-033, 4.83080193e-001, 9.23220689e-042],
             [3.65130247e-001,
              1.00000000e-300,
              6.34869753e-001,
              1.00000000e-300],
             [8.68776164e-001,
              1.02254304e-034,
              1.31223836e-001,
              6.21835051e-047],
             [3.33333333e-301, 3.33333333e-001, 3.33333333e-301, 6.66666667e-001]])
        output_p_emission = array(
            [[2.02593570e-301, 2.02593570e-301, 2.02593570e-301, 1.00000000e+000],
             [1.00000000e-300,
              1.00000000e-300,
              1.00000000e+000,
              1.09629016e-259],
             [3.26369779e-301,
              3.26369779e-301,
              3.26369779e-301,
              1.00000000e+000],
             [3.33333333e-001, 6.66666667e-001, 3.33333333e-301, 3.33333333e-301]])

        markov_model = MarkovModel.train_bw(states, alphabet, training_data)
        self.assertEqual(''.join(markov_model.states), ''.join(states))
        self.assertEqual(''.join(markov_model.alphabet), ''.join(alphabet))
        self.assertTrue(array_equal(
            around(markov_model.p_initial, decimals=3),
            around(output_p_initial, decimals=3)))
        self.assertTrue(array_equal(around(
            markov_model.p_transition, decimals=3),
            around(output_p_transition, decimals=3)))
        self.assertTrue(array_equal(around(
            markov_model.p_emission, decimals=3),
            around(output_p_emission, decimals=3)))
开发者ID:BioGeek,项目名称:biopython,代码行数:46,代码来源:test_MarkovModel.py


注:本文中的Bio.MarkovModel.train_bw方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。