当前位置: 首页>>代码示例>>Python>>正文


Python Bio.MarkovModel类代码示例

本文整理汇总了Python中Bio.MarkovModel的典型用法代码示例。如果您正苦于以下问题:Python MarkovModel类的具体用法?Python MarkovModel怎么用?Python MarkovModel使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了MarkovModel类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_save_and_load

    def test_save_and_load(self):
        states = "NR"
        alphabet = "AGTC"
        p_initial = array([1.0, 0.0])
        p_transition = array([[0.75, 0.25], [0.25, 0.75]])
        p_emission = array(
            [[0.45, 0.36, 0.06, 0.13], [0.24, 0.18, 0.12, 0.46]])
        markov_model_save = MarkovModel.MarkovModel(
            states,
            alphabet,
            p_initial,
            p_transition,
            p_emission)

        handle = StringIO()
        MarkovModel.save(markov_model_save, handle)
        handle.seek(0)
        markov_model_load = MarkovModel.load(handle)

        self.assertEqual(''.join(markov_model_load.states), states)
        self.assertEqual(''.join(markov_model_load.alphabet), alphabet)
        self.assertTrue(array_equal(markov_model_load.p_initial, p_initial))
        self.assertTrue(array_equal
                        (markov_model_load.p_transition, p_transition))
        self.assertTrue(array_equal(markov_model_load.p_emission, p_emission))
开发者ID:BioGeek,项目名称:biopython,代码行数:25,代码来源:test_MarkovModel.py

示例2: test_logvecadd

    def test_logvecadd(self):
        vec1 = log(array([1, 2, 3, 4]))
        vec2 = log(array([5, 6, 7, 8]))

        sumvec = array([1.79175947, 2.07944154, 2.30258509, 2.48490665])
        self.assertTrue(
            array_equal(around(MarkovModel._logvecadd(vec1, vec2), decimals=3), around(sumvec, decimals=3)))
开发者ID:BioGeek,项目名称:biopython,代码行数:7,代码来源:test_MarkovModel.py

示例3: _create_mm

    def _create_mm(self, motif_num, alphabet):
        try:
            # Only EDeN has original_motives_list
            input_motif = self.original_motives_list[motif_num - 1]
        except AttributeError:
            input_motif = self.motives_list[motif_num - 1]

        headers, instances = [list(x) for x in zip(*input_motif)]

        lengths = [len(instances[i]) for i in range(len(instances))]
        median_len = int(math.ceil(np.median(lengths)))

        # Hidden states for Markov Model
        states = [str(i + 1) for i in range(median_len)]

        print "original samples: %d" % len(instances)
        print "states:", len(states)
        # under sampling
        if (len(instances) * len(states)) > 500:
            samples = 500 / len(states)
            # samples = 50    # fixed sampling
            print 'sample size = %d' % samples
            instances = random.sample(instances, samples)

        instances = random.sample(instances, samples)

        try:
            mm = MarkovModel.train_bw(states=states,
                                      alphabet=alphabet,
                                      training_data=instances)
        except RuntimeError, msg:
            raise RuntimeError("Motif data is too large. " + str(msg))
开发者ID:fabriziocosta,项目名称:pyMotif,代码行数:32,代码来源:utilities.py

示例4: test_mle

    def test_mle(self):
        states = ["0", "1", "2", "3"]
        alphabet = ["A", "C", "G", "T"]
        training_data = [("AACCCGGGTTTTTTT", "001112223333333"),
                         ("ACCGTTTTTTT", "01123333333"),
                         ("ACGGGTTTTTT", "01222333333"),
                         ("ACCGTTTTTTTT", "011233333333"), ]
        training_outputs = array([[0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3], [
                                 0, 1, 1, 2, 3, 3, 3, 3, 3, 3, 3], [0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3], [0, 1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3]])
        training_states = array([[0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3], [
                                0, 1, 1, 2, 3, 3, 3, 3, 3, 3, 3], [0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3], [0, 1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3]])

        p_initial = array([1., 0., 0., 0.])
        p_transition = array([[0.2, 0.8, 0., 0.],
                              [0., 0.5, 0.5, 0.],
                              [0., 0., 0.5, 0.5],
                              [0., 0., 0., 1.]])
        p_emission = array(
            [[0.66666667, 0.11111111, 0.11111111, 0.11111111],
             [0.08333333, 0.75, 0.08333333, 0.08333333],
             [0.08333333, 0.08333333, 0.75, 0.08333333],
             [0.03125, 0.03125, 0.03125, 0.90625]])
        p_initial_out, p_transition_out, p_emission_out = MarkovModel._mle(
            len(states), len(alphabet), training_outputs, training_states, None, None, None)
        self.assertTrue(
            array_equal(around(p_initial_out, decimals=3), around(p_initial, decimals=3)))
        self.assertTrue(
            array_equal(around(p_transition_out, decimals=3), around(p_transition, decimals=3)))
        self.assertTrue(
            array_equal(around(p_emission_out, decimals=3), around(p_emission, decimals=3)))
开发者ID:BioGeek,项目名称:biopython,代码行数:30,代码来源:test_MarkovModel.py

示例5: mostLikely

    def mostLikely(self, normal, island, dnastrand):
        states = "NR"
        alphabet = "AGTC"

        normal = [float(x)/100 for x in normal]
        island = [float(x)/100 for x in island]
        
        p_initial = [1.0, 0.0]
        p_initial = asarray(p_initial)

        p_transition = []
        p_transition.append([1.0-normal[-1], normal[-1]])
        p_transition.append([island[-1], 1.0-island[-1]])
        p_transition = asarray(p_transition)
        
        p_emission = []   # 2x4 matrix
        p_emission.append(normal[:4])
        p_emission.append(island[:4])
        p_emission = asarray(p_emission)

        mm = MarkovModel.MarkovModel(
            states, alphabet, p_initial, p_transition, p_emission)

        x = MarkovModel.find_states(mm, dnastrand)
        states, x = x[0]
        return ''.join(states)
开发者ID:Mat-D,项目名称:biopython,代码行数:26,代码来源:test_MarkovModel.py

示例6: test_uniform_norm

 def test_uniform_norm(self):
     shape = (4, 3)
     matrix = array([[0.33333333, 0.33333333, 0.33333333],
                     [0.33333333, 0.33333333, 0.33333333],
                     [0.33333333, 0.33333333, 0.33333333],
                     [0.33333333, 0.33333333, 0.33333333]])
     self.assertTrue(
         array_equal(around(MarkovModel._uniform_norm(shape), decimals=3), around(matrix, decimals=3)))
开发者ID:BioGeek,项目名称:biopython,代码行数:8,代码来源:test_MarkovModel.py

示例7: test_random_norm

 def test_random_norm(self):
     random.seed(0)
     shape = (4, 3)
     matrix = array([[0.29399155, 0.38311672, 0.32289173],
                     [0.33750765, 0.26241723, 0.40007512],
                     [0.1908342, 0.38890714, 0.42025866],
                     [0.22501625, 0.46461061, 0.31037314]])
     self.assertTrue(
         array_equal(around(MarkovModel._random_norm(shape), decimals=3), around(matrix, decimals=3)))
开发者ID:BioGeek,项目名称:biopython,代码行数:9,代码来源:test_MarkovModel.py

示例8: test_normalize_and_copy_and_check

    def test_normalize_and_copy_and_check(self):
        matrix_in1 = array(
            [[1.1, 2.2, 3.3], [4.4, 5.5, 6.6], [7.7, 8.8, 9.9]])
        matrix_in2 = array([1, 2, 3])

        matrix_out1 = array(
            [[0.16666667, 0.33333333, 0.5], [0.26666667, 0.33333333, 0.4], [0.29166667, 0.33333333, 0.375]])
        matrix_out2 = array([0.16666667, 0.33333333, 0.5])
        self.assertTrue(
            array_equal(around(MarkovModel._normalize(matrix_in1), decimals=3), around(matrix_out1, decimals=3)))
        self.assertTrue(
            array_equal(around(MarkovModel._normalize(matrix_in2), decimals=3), around(matrix_out2, decimals=3)))

        shape1 = (3, 3)
        shape2 = (3,)
        self.assertTrue(
            array_equal(around(MarkovModel._copy_and_check(matrix_out1, shape1), decimals=3), around(matrix_out1, decimals=3)))
        self.assertTrue(
            array_equal(around(MarkovModel._copy_and_check(matrix_out2, shape2), decimals=3), around(matrix_out2, decimals=3)))
开发者ID:BioGeek,项目名称:biopython,代码行数:19,代码来源:test_MarkovModel.py

示例9: test_readline_and_check_start

    def test_readline_and_check_start(self):
        states = "NR"
        alphabet = "AGTC"
        markov_model = MarkovModel.MarkovModel(states, alphabet)

        line = "This is a \n string with two lines \n"
        handle = StringIO(line)
        start = "This is a \n"
        self.assertEqual(
            start, MarkovModel._readline_and_check_start(handle, start))
开发者ID:BioGeek,项目名称:biopython,代码行数:10,代码来源:test_MarkovModel.py

示例10: test_backward

    def test_backward(self):
        states = ["CP", "IP"]
        outputs = [2, 1, 0]
        lp_transition = log([[0.7, 0.3], [0.5, 0.5]])
        lp_emission = log([[0.6, 0.1, 0.3], [0.1, 0.7, 0.2]])

        matrix = array([[-3.45776773, -3.10109279, -0.51082562, 0.],
                        [-3.54045945, -1.40649707, -2.30258509, 0.]])
        self.assertTrue(
            array_equal(around(MarkovModel._backward(
                len(states), len(outputs), lp_transition, lp_emission, outputs), decimals=3),
                around(matrix, decimals=3)))
开发者ID:BioGeek,项目名称:biopython,代码行数:12,代码来源:test_MarkovModel.py

示例11: test_logsum_and_exp_logsum

    def test_logsum_and_exp_logsum(self):
        matrix = array(
            [[1.1, 2.2, 3.3], [4.4, 5.5, 6.6], [7.7, 8.8, 9.9]])
        matrix1 = array([1, 2, 3])

        output = 10.304721798
        output1 = 3.40760596444
        self.assertEqual(
            float('%.3f' % MarkovModel._logsum(matrix)),
            float('%.3f' % output))
        self.assertEqual(
            float('%.3f' % MarkovModel._logsum(matrix1)),
            float('%.3f' % output1))

        output2 = 29873.342245
        output3 = 30.1928748506
        self.assertEqual(
            float('%.3f' % MarkovModel._exp_logsum(matrix)),
            float('%.3f' % output2))
        self.assertEqual(
            float('%.3f' % MarkovModel._exp_logsum(matrix1)),
            float('%.3f' % output3))
开发者ID:BioGeek,项目名称:biopython,代码行数:22,代码来源:test_MarkovModel.py

示例12: test_topcoder5

 def test_topcoder5(self):
     # N
     states = "NR"
     alphabet = "AGTC"
     p_initial = array([1.0, 0.0])
     p_transition = array([[0.84, 0.16],
                           [0.25, 0.75]])
     p_emission = array([[0.26, 0.37, 0.08, 0.29],
                         [0.31, 0.13, 0.33, 0.23]])
     markov_model = MarkovModel.MarkovModel(
         states, alphabet, p_initial, p_transition, p_emission)
     states = MarkovModel.find_states(markov_model, "T")
     self.assertEqual(len(states), 1)
     state_list, state_float = states[0]
     self.assertEqual(state_list, ["N"])
开发者ID:BioGeek,项目名称:biopython,代码行数:15,代码来源:test_MarkovModel.py

示例13: test_topcoder4

 def test_topcoder4(self):
     # NRRRRRRRRRR
     states = "NR"
     alphabet = "AGTC"
     p_initial = array([1.0, 0.0])
     p_transition = array([[0.55, 0.45],
                           [0.15, 0.85]])
     p_emission = array([[0.75, 0.03, 0.01, 0.21],
                         [0.34, 0.11, 0.39, 0.16]])
     markov_model = MarkovModel.MarkovModel(
         states, alphabet, p_initial, p_transition, p_emission)
     states = MarkovModel.find_states(markov_model, "TTAGCAGTGCG")
     self.assertEqual(len(states), 1)
     state_list, state_float = states[0]
     self.assertEqual(state_list, ['N', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R'])
开发者ID:BioGeek,项目名称:biopython,代码行数:15,代码来源:test_MarkovModel.py

示例14: test_topcoder3

 def test_topcoder3(self):
     # NRRRRRRRRRRRNNNNRRRRRRRRR
     states = "NR"
     alphabet = "AGTC"
     p_initial = array([1.0, 0.0])
     p_transition = array([[0.75, 0.25],
                           [0.25, 0.75]])
     p_emission = array([[0.45, 0.36, 0.06, 0.13],
                         [0.24, 0.18, 0.12, 0.46]])
     markov_model = MarkovModel.MarkovModel(
         states, alphabet, p_initial, p_transition, p_emission)
     states = MarkovModel.find_states(markov_model, "CCGTACTTACCCAGGACCGCAGTCC")
     self.assertEqual(len(states), 1)
     state_list, state_float = states[0]
     self.assertEqual(state_list, ['N', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'N', 'N', 'N', 'N', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R'])
开发者ID:BioGeek,项目名称:biopython,代码行数:15,代码来源:test_MarkovModel.py

示例15: test_topcoder2

 def test_topcoder2(self):
     # NNNRRRNNRRNRRN
     states = "NR"
     alphabet = "AGTC"
     p_initial = array([1.0, 0.0])
     p_transition = array([[0.56, 0.44],
                           [0.25, 0.75]])
     p_emission = array([[0.04, 0.14, 0.62, 0.20],
                         [0.39, 0.15, 0.04, 0.42]])
     markov_model = MarkovModel.MarkovModel(
         states, alphabet, p_initial, p_transition, p_emission)
     states = MarkovModel.find_states(markov_model, "CCTGAGTTAGTCGT")
     self.assertEqual(len(states), 1)
     state_list, state_float = states[0]
     self.assertEqual(state_list, ['N', 'N', 'N', 'R', 'R', 'R', 'N', 'N', 'R', 'R', 'N', 'R', 'R', 'N'])
开发者ID:BioGeek,项目名称:biopython,代码行数:15,代码来源:test_MarkovModel.py


注:本文中的Bio.MarkovModel类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。