当前位置: 首页>>代码示例>>C#>>正文


C# Vector.Max方法代码示例

本文整理汇总了C#中Vector.Max方法的典型用法代码示例。如果您正苦于以下问题:C# Vector.Max方法的具体用法?C# Vector.Max怎么用?C# Vector.Max使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Vector的用法示例。


在下文中一共展示了Vector.Max方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: PrepareMultilevel

        /// <summary>
        /// Compute indices of boxes at all levels for each basis function
        /// </summary>
        /// <param name="rcx">x-coordinates of basis functions centers</param>
        /// <param name="rcy">y-coordinates of basis functions centers</param>
        /// <param name="rcz">z-coordinates of basis functions centers</param>
        /// <param name="N">Number of basis functions (length of rcx, rcy, and rcz)</param>
        /// <param name="finest_level_size">size of finest level in multilevel subdivision</param>
        /// <returns>
        /// Matrix with one column per level in multilevel subdivision
        /// Columns contain the box index in which a basis function is located                    Row index is the basis function index
        /// </returns>
        public static BasicFuncBoxes PrepareMultilevel(Vector rcx, Vector rcy, Vector rcz, int N, double finest_level_size)
        {
            double xmax = rcx.Max(); double xmin = rcx.Min();
            double ymax = rcy.Max(); double ymin = rcy.Min();
            double zmax = rcz.Max(); double zmin = rcz.Min();

            int Lx = (int)Math.Ceiling(Math.Log((xmax - xmin) / (finest_level_size)) / Math.Log(2));
            int Ly = (int)Math.Ceiling(Math.Log((ymax - ymin) / (finest_level_size)) / Math.Log(2));
            int Lz = (int)Math.Ceiling(Math.Log((zmax - zmin) / (finest_level_size)) / Math.Log(2));
            int L = (int)Math.Max(Lx, Math.Max(Ly, Lz));

            double box_size_x = (xmax - xmin) * (1 + 1e-3);
            double box_size_y = (ymax - ymin) * (1 + 1e-3);
            double box_size_z = (zmax - zmin) * (1 + 1e-3);
            double box_size = Math.Max(box_size_x, Math.Max(box_size_y, box_size_z));

            BasicFuncBoxes basicFuncBoxes = new BasicFuncBoxes(N, L);

            for (int i = 0; i < L; i++)
            {
                box_size = box_size / 2;

                Vector tempVx = new DenseVector(rcx.Count);
                for (int j = 0; j < rcx.Count; j++)
                {
                    tempVx[j] = Math.Floor((rcx[j] - xmin) / box_size);
                }

                Vector tempVy = new DenseVector(rcy.Count);
                for (int j = 0; j < rcy.Count; j++)
                {
                    tempVy[j] = Math.Floor((rcy[j] - ymin) / box_size);
                }

                Vector tempVz = new DenseVector(rcz.Count);
                for (int j = 0; j < rcz.Count; j++)
                {
                    tempVz[j] = Math.Floor((rcz[j] - zmin) / box_size);
                }

                basicFuncBoxes.X.SetColumn(i, tempVx);
                basicFuncBoxes.Y.SetColumn(i, tempVy);
                basicFuncBoxes.Z.SetColumn(i, tempVz);
            }

            return basicFuncBoxes;
        }
开发者ID:Yapko,项目名称:ACASparseMatrix,代码行数:59,代码来源:ACA.cs

示例2: CalculateConditional

        internal double CalculateConditional(Vector y, Vector x)
        {
            if (x == null && y == null)
                throw new InvalidOperationException("x and y do not exist!");

            var values = x.Distinct();
            var valueCount = values.Count();
            double result = 0;

            // binary split
            if (Width == 2)
            {
                // do binary split based on mean
                var mean = x.Mean();
                var ltSlice = y.Slice(x.Indices(d => d < mean));
                var gtSlice = y.Slice(x.Indices(d => d >= mean));

                var lh = Calculate(ltSlice);
                var rh = Calculate(gtSlice);

                result = (0.5 * lh) + (0.5 * rh);
                SplitValues = new double[] { x.Min(), mean, x.Max() + 1 };
            }
            // if valueCount has more values than
            // width allows, segment out data to
            // fit width
            else if (valueCount > Width)
            {
                double p = 0;
                double h = 0;
                // create segmentation
                // should really consider
                // some kind of distribution
                // for doing segmentation..
                SplitValues = x.Segment(Width);
                // for convenience ;)
                SplitValues[SplitValues.Length - 1] += 1;
                for (int i = 1; i < SplitValues.Length; i++)
                {
                    // get slice
                    var s = x.Indices(d => d >= SplitValues[i - 1] && d < SplitValues[i]);

                    // probability of slice
                    p = s.Count() / (double)x.Length;

                    // Impurity (y | x_i)
                    h = Calculate(y.Slice(s));

                    // sum up
                    result += p * h;
                }
            }
            // otherwise perform regular counting
            // exercises to find cond entropy
            else
            {
                double p = 0;
                double h = 0;
                // says there is no width
                // since deterministic
                // slice values
                _width = 0;
                SplitValues = new double[valueCount];
                int k = -1;
                // each disting x value
                foreach (var i in values)
                {
                    SplitValues[++k] = i;

                    // get slice
                    var s = x.Indices(d => d == i);

                    // probability of x_i
                    p = s.Count() / (double)x.Length;

                    // Impurity (y | x_i)
                    h = Calculate(y.Slice(s));

                    // sum up
                    result += p * h;
                }
            }

            return result;
        }
开发者ID:al-main,项目名称:CloudyBank,代码行数:85,代码来源:Impurity.cs

示例3: ShowResults

        private void ShowResults()
        {
            if (rbBestNetwork.Checked)
            {
                mSelectedActivationNetwork = mBestActivationNetwork;
            }
            if (rbBestTestNetwork.Checked)
            {
                mSelectedActivationNetwork = mBestTestActivationNetwork;
            }
            if (rbGenetic.Checked)
            {
                mSelectedActivationNetwork = mBestGeneticActivationNetwork;
            }

            try
            {
                TVec dy = null;
                TVec dx = null;
                fittedChart.Series.Clear();
                fittedChart.Series.Add(new Steema.TeeChart.Styles.FastLine());
                fittedChart.Series.Add(new Steema.TeeChart.Styles.FastLine());
                fittedChart.Series[0].Title = "наблюдения";
                fittedChart.Series[1].Title = "прогнози";

                fittedChart.Axes.Left.Title.Text = "Y";
                fittedChart.Axes.Bottom.Title.Text = "";
                fittedChart.Axes.Left.Automatic = true;

                Vector timeseries = new Vector((TestEnd-ExtractBegin) + 1);
                Vector abs = new Vector((TestEnd - ExtractBegin) + 1);

                int? dependent_variable_id = 0;
                foreach (int? dep in this.DependentVariables.Keys)
                {
                    dependent_variable_id = dep;
                }

                MainDataSetTableAdapters.VARIABLESTableAdapter adptVariables = new Plig.TimeSeries.Client.MainDataSetTableAdapters.VARIABLESTableAdapter();
                mindep = adptVariables.MinObservationValue(ExtractBegin, TestEnd, dependent_variable_id.Value).Value;
                factordep = 1.7 / (adptVariables.MaxObservationValue(ExtractBegin, TestEnd, dependent_variable_id.Value).Value - adptVariables.MinObservationValue(ExtractBegin, TestEnd, dependent_variable_id.Value).Value);

                int cnt = ExtractBegin;
                foreach (KeyValuePair<int, double?> d in this.VariableObservations(dependent_variable_id.Value))
                {
                    if (d.Key >= ExtractBegin && d.Key <= TestEnd)
                    {
                        try
                        {
                            timeseries.Values[cnt - ExtractBegin] = d.Value.Value;
                        }
                        catch
                        {
                            timeseries.Values[cnt - ExtractBegin] = 0.0;
                        }
                        abs.Values[cnt - ExtractBegin] = cnt;
                        cnt++;
                    }
                }

                dy = timeseries;
                dx = abs;
                Dew.Math.Tee.TeeChart.DrawValues(dx, dy, fittedChart.Series[0], false);

                // Извличаме стойностите на независимите променливи
                TVec dy1 = null;
                Vector timeseries1 = new Vector(TestEnd - ExtractBegin + 1);

                int independent_vars = this.IndependentVariables.Count;
                double[] tuple = new double[independent_vars];

                for (int i = ExtractBegin; i <= TestEnd; i++)
                {
                    int cnt1 = 0;
                    foreach (int variable_id in this.IndependentVariables.Keys)
                    {
                        double factor = 1.7 / ( (this.SeriesInfo[variable_id]).Max - (this.SeriesInfo[variable_id]).Min);

                        tuple[cnt1] = (this.SeriesInfo[variable_id].Values[i].Value - (this.SeriesInfo[variable_id]).Min) * factor - 0.85;
                        cnt1++;
                    }
                    double value = (mSelectedActivationNetwork.Compute(tuple)[0] + 0.85) / factordep + mindep;
                    timeseries1.Values[i - ExtractBegin] = value;
                }

                dy1 = timeseries1;
                Dew.Math.Tee.TeeChart.DrawValues(dx, dy1, fittedChart.Series[1], false);

                residuals = new TVec();
                residuals.Length = timeseries1.Length;
                for (int i = 0; i < residuals.Length; i++)
                {
                    residuals.Values[i] = timeseries1.Values[i] - timeseries.Values[i];
                }
                Vector Bins = new Vector(0);
                Vector Freq = new Vector(0);
                chartResiduals.Series[0].Title = "остатъци";
                chartResiduals.Series[1].Title = "Нормално разпределение";
                chartResiduals.Axes.Left.Title.Text = "Y";
                chartResiduals.Axes.Bottom.Title.Text = "";
//.........这里部分代码省略.........
开发者ID:pignatov,项目名称:TSANN,代码行数:101,代码来源:PlainNeuralNetworkModel.cs

示例4: InitPlotter

        private void InitPlotter(Vector.FxVectorF vec, PlotType plotType, Color color)
        {
            // init the lists
            listPlotsGeometry = new List<PlotGeometry>();

            // set the position and the size of the element
            this.Position = new Vector.FxVector2f(0);
            this.Size = new Vector.FxVector2f(750, 500);

            // add the vector to the list
            PlotGeometry plot = new PlotGeometry();
            plot.OrigVectorY = vec;
            plot.Color = color.ToColor4();
            plot.Type = plotType;
            plot.StepType = XStepType.ZeroToMax;

            // add the plot to the list
            listPlotsGeometry.Add(plot);

            // set the origin position
            {
                float max = vec.Max();
                float min = vec.Min();
                float orig_y = Size.Y / 2;
                if(max >0 && min<0)
                {
                    orig_y = Size.Y * (min / (max - min));
                }

                if(max >0 && min >= 0)
                {
                    orig_y = -min;
                }

                if(max <=0 && min <0)
                {
                    orig_y = Size.Y + max;
                }
                OriginPosition = new Vector.FxVector2f(5, orig_y);
            }

            // allocate scale
            _scale = new Vector.FxVector2f(1.0f);

            // fit the plots to the view
            FitPlots();

            // set the x_step base on the size of vec and the width
            X_Space = this.Size.x / vec.Size;

            // init format
            _TextFormat = new TextElementFormat();
            _TextFormat.familyName = "Calibri";
            _TextFormat.weight = SharpDX.DirectWrite.FontWeight.Black;
            _TextFormat.fontStyle = SharpDX.DirectWrite.FontStyle.Normal;
            _TextFormat.fontStretch = SharpDX.DirectWrite.FontStretch.Normal;
            _TextFormat.fontSize = 8.0f;

            // init toolstrip
            InitToolStrips();
        }
开发者ID:fxbit,项目名称:FxMath,代码行数:61,代码来源:PloterElement.cs


注:本文中的Vector.Max方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。