当前位置: 首页>>代码示例>>C#>>正文


C# Mat.Split方法代码示例

本文整理汇总了C#中Mat.Split方法的典型用法代码示例。如果您正苦于以下问题:C# Mat.Split方法的具体用法?C# Mat.Split怎么用?C# Mat.Split使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Mat的用法示例。


在下文中一共展示了Mat.Split方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: SubSampling

        public static Mat SubSampling(Mat img)
        {
            ImageViewer.Show(img, String.Format(
                                                 "Canny Gray"));
               //img = new Mat("diplomka.png", LoadImageType.Color);
            var colorChannels = img.Split();

            var rSobelX =  new Mat(img.Size, DepthType.Cv8U, 1);
            var rSobelY = new Mat(img.Size, DepthType.Cv8U, 1);
            var gSobelX = new Mat(img.Size, DepthType.Cv8U, 1);
            var gSobelY = new Mat(img.Size, DepthType.Cv8U, 1);
            var bSobelX = new Mat(img.Size, DepthType.Cv8U, 1);
            var bSobelY = new Mat(img.Size, DepthType.Cv8U, 1);

            CvInvoke.Sobel(colorChannels[2], rSobelX, DepthType.Cv8U, 1, 0);
            CvInvoke.Sobel(colorChannels[2], rSobelY, DepthType.Cv8U, 0, 1);

            CvInvoke.Sobel(colorChannels[1], gSobelX, DepthType.Cv8U, 1, 0);
            CvInvoke.Sobel(colorChannels[1], gSobelY, DepthType.Cv8U, 0, 1);

            CvInvoke.Sobel(colorChannels[0], bSobelX, DepthType.Cv8U, 1, 0);
            CvInvoke.Sobel(colorChannels[0], bSobelY, DepthType.Cv8U, 0, 1);

            int cols = img.Cols;
            int rows = img.Rows;

            var edgeValues = new double[rows, cols];

            for(int rowIndex = 0; rowIndex < rows; rowIndex++)
            {
                for(int columnIndex = 0; columnIndex < cols; columnIndex++)
                {
                    var rX = rSobelX.GetData(rowIndex, columnIndex)[0];
                    var rY = rSobelY.GetData(rowIndex, columnIndex)[0];
                    var gX = gSobelX.GetData(rowIndex, columnIndex)[0];
                    var gY = gSobelY.GetData(rowIndex, columnIndex)[0];
                    var bX = bSobelX.GetData(rowIndex, columnIndex)[0];
                    var bY = bSobelY.GetData(rowIndex, columnIndex)[0];

                    var edgeRed = Math.Sqrt(rX*rX + rY*rY);
                    var edgeGreen = Math.Sqrt(gX*gX + gY*gY);
                    var edgeBlue = Math.Sqrt(bX*bX + bY*bY);

                    var edgeValue = (new double[]{edgeRed, edgeGreen, edgeBlue}).Max();
                    edgeValues[rowIndex, columnIndex] = edgeValue;
                }
            }

               var samples = new byte[rows, cols, 3];

               var samplesList = new List<RGBSample>();
               var samplesHistogram = new RGBSample[256, 256, 256];

            for (int rowIndex = 0; rowIndex < rows; rowIndex++)
            {
                for (int columnIndex = 0; columnIndex < cols; columnIndex++)
                {
                    var isLocalMinima = false;

                    if (rowIndex > 0
                        && rowIndex < rows - 1
                        && columnIndex > 0
                        && columnIndex < cols - 1 )
                    {
                        isLocalMinima = IsLocalMinima(new Point(rowIndex, columnIndex), edgeValues);
                    }

                    if(!isLocalMinima)
                    {
                        samples[rowIndex, columnIndex, 2] = 255;
                        samples[rowIndex, columnIndex, 1] = 255;
                        samples[rowIndex, columnIndex, 0] = 255;
                    }
                    else
                    {
                        var bytes = img.GetData(rowIndex, columnIndex);

                        var r = bytes[2];
                        var g = bytes[1];
                        var b = bytes[0];

                        samples[rowIndex, columnIndex, 2] = r;
                        samples[rowIndex, columnIndex, 1] = g;
                        samples[rowIndex, columnIndex, 0] = b;

                        if(samplesHistogram[r , g, b] == null)
                        {
                            var sample =  new RGBSample() { Red = r, Green = g, Blue = b};
                            samplesHistogram[r, g, b] = sample;
                            samplesList.Add(sample);
                        }

                        samplesHistogram[r, g, b].Points.Add(new Point(rowIndex, columnIndex));
                    }
                }
            }

               Image<Bgr, byte> img4 = new Image<Bgr, byte>(samples);
            ImageViewer.Show(img4, String.Format(
                                                 "44 Gray"));
//.........这里部分代码省略.........
开发者ID:chovik,项目名称:master-thesis,代码行数:101,代码来源:Program.cs

示例2: detectHair

        void detectHair(PersonFace personFace, Mat hairImage)
        {
            Rect faceRect = personFace.GetFace();

            double adjWidth = faceRect.width * 0.85;
            double adjHeight = faceRect.height * 1.2;
            double adjX = faceRect.x + (faceRect.width - adjWidth) / 2;
            double adjY = faceRect.y + (faceRect.height - adjHeight) / 2;

            Rect adjFaceRect = new Rect((int)adjX, (int)adjY, (int)adjWidth, (int)adjHeight);

            double[] faceLineData = personFace.GetFaceLineData();
            PointGenerator faceLine = new PointGenerator(faceLineData[0], faceLineData[1]);
            Point faceTopPoint = faceLine.GetFromY(adjFaceRect.y);
            Point faceBottomPoint = faceLine.GetFromY(adjFaceRect.y + adjFaceRect.height);

            //Draw face line
            //Imgproc.line(hairImage, faceTopPoint, faceBottomPoint, new Scalar(255, 0, 0), 2);

            //Get face feature angle
            double faceFeatureAngle = Math.Atan(faceLineData[0]);
            faceFeatureAngle = RadianToDegree(faceFeatureAngle);
            faceFeatureAngle += faceFeatureAngle > 0 ? -90 : 90;

            //Imgproc.rectangle(hairImage, adjFaceRect, new Scalar(0, 255, 255), 2);

            /*Imgproc.ellipse(hairImage,
                new Point(adjFaceRect.x + adjFaceRect.width / 2, adjFaceRect.y + adjFaceRect.height / 2),
                new Size(adjFaceRect.width/2, adjFaceRect.height/2), faceFeatureAngle, 0, 360, new Scalar(255, 0, 0), 2);

            Imgproc.ellipse(hairImage,
                new Point(adjFaceRect.x + adjFaceRect.width / 2, adjFaceRect.y + adjFaceRect.height / 2),
                new Size((int)(adjFaceRect.width / 1.8), (int)(adjFaceRect.height / 1.8)), faceFeatureAngle, 0, 360, new Scalar(255, 0, 0), 2);*/

            Mat[] imgComponents = hairImage.Split();

            for (int i = 0; i < 5; i++)
            {
                double factor = 1.8 - i * 0.2;

                Mat maskImage = new Image<Gray, byte>(hairImage.width(), hairImage.height(), new Gray(0)).Mat;

                Imgproc.ellipse(maskImage,
                    new Point(adjFaceRect.x + adjFaceRect.width / 2, adjFaceRect.y + adjFaceRect.height / 2),
                    new Size((int)(adjFaceRect.width / factor), (int)(adjFaceRect.height / factor)), faceFeatureAngle + 180, 0, 180, new Scalar(255), -1);

                Imgproc.ellipse(maskImage,
                    new Point(adjFaceRect.x + adjFaceRect.width / 2, adjFaceRect.y + adjFaceRect.height / 2),
                    new Size(adjFaceRect.width / 2, adjFaceRect.height / 2), faceFeatureAngle, 0, 360, new Scalar(0), -1);

                //imageBox13.Image = maskImage;

                Mat testImg = new Mat();

                hairImage.CopyTo(testImg, maskImage);

                imageBox13.Image = testImg;

                Stack<string> titleStack = new Stack<string>();
                titleStack.Push("Red");
                titleStack.Push("Green");
                titleStack.Push("Blue");

                HistogramForm histForm = new HistogramForm();

                foreach (Mat img in imgComponents)
                {
                    //try histogram only the upper half to detect the most probable hair color range

                    Mat hist = new Mat();
                    CvInvoke.CalcHist(new VectorOfMat(img), new int[] { 0 }, maskImage, hist, new int[] { 256 }, new float[] { 0, 255 }, false);

                    string color = titleStack.Pop();

                    histForm.AddHist(hist, color, System.Drawing.Color.FromName(color));

                    /*byte[] testBuffer = new byte[256];
                    hist.CopyTo(testBuffer);

                    string msg = "";

                    foreach (byte value in testBuffer)
                        msg += value + " ";

                    msg += Environment.NewLine;
                    msg += Environment.NewLine;

                    textBox1.AppendText(msg);*/

                }

                histForm.Show(i.ToString());

            }

            Image<Bgr, byte> testImg2 = new Image<Bgr, byte>(hairImage.Bitmap);

            imageBox13.Image = testImg2.InRange(new Bgr(25, 25, 25), new Bgr(100, 85, 100));

            //createHistogram(new Image<Bgr, byte>(maskImage.Bitmap), 256, "teste");
//.........这里部分代码省略.........
开发者ID:lucasolivier,项目名称:ImagineAlpha,代码行数:101,代码来源:Form1.cs

示例3: EdgePreservingSmoothing

        public static Mat EdgePreservingSmoothing(Mat img)
        {
            var colorChannels = img.Split();

              var rChannel = colorChannels[2];
              var gChannel = colorChannels[1];
              var bChannel = colorChannels[0];

              int cols = img.Cols;
              int rows = img.Rows;

              //result image will be smaller because the pixels on the border have less then 8 neighbours.
              //we are going to ignore them
              Mat result = new Mat(img.Rows - 2, img.Cols - 2, img.Depth, 1);
              byte[, ,] resultValues = new byte[img.Rows, img.Cols, 3];

              for(int rowIndex = 0; rowIndex < rows; rowIndex++)
              {
              for(int columnIndex = 0; columnIndex < cols; columnIndex++)
              {
                  if(rowIndex == 0
                      || rowIndex == rows - 1
                      || columnIndex == 0
                      || columnIndex == cols - 1)
                  {
                      //pixel is on the border
                      resultValues[rowIndex, columnIndex, 0] = 0;
                      resultValues[rowIndex, columnIndex, 1] = 0;
                      resultValues[rowIndex, columnIndex, 2] = 0;
                      continue;
                  }

                  var newValue = ComputeManhattanColorDistances(rChannel, gChannel, bChannel, new Point(rowIndex, columnIndex), 10);
                  resultValues[rowIndex, columnIndex, 0] = Convert.ToByte(newValue[2]);
                  resultValues[rowIndex, columnIndex, 1] = Convert.ToByte(newValue[1]);
                  resultValues[rowIndex, columnIndex, 2] = Convert.ToByte(newValue[0]);
              }
              }

              Image<Bgr, byte> img2 = new Image<Bgr, byte>(resultValues);
              //ImageViewer.Show(img2, String.Format(
              //                                      "Img Gray"));

              return img2.Mat;
        }
开发者ID:chovik,项目名称:master-thesis,代码行数:45,代码来源:Program.cs

示例4: EdgePreservingSmoothing

        public static byte[, ,] EdgePreservingSmoothing(Mat img, VectorOfPoint points, int numberOfCycles = 5)
        {
            byte[, ,] resultValues = new byte[img.Rows, img.Cols, 3];

            for (int i = 0; i < 1; i++)
            {
                var colorChannels = img.Split();

                var rChannel = colorChannels[2];
                var gChannel = colorChannels[1];
                var bChannel = colorChannels[0];

                int cols = img.Cols;
                int rows = img.Rows;

                //result image will be smaller because the pixels on the border have less then 8 neighbours. 
                //we are going to ignore them
                Mat result = new Mat(img.Rows - 2, img.Cols - 2, img.Depth, 1);


                for (int pointIndex = 0; pointIndex < points.Size; pointIndex++)
                {
                    var point = points[pointIndex];

                        if (point.Y == 0
                            || point.Y == rows - 1
                            || point.X == 0
                            || point.X == cols - 1)
                        {
                            //pixel is on the border
                            resultValues[point.Y, point.X, 0] = 0;
                            resultValues[point.Y, point.X, 1] = 0;
                            resultValues[point.Y, point.X, 2] = 0;
                            continue;
                        }

                        var newValue = ComputeManhattanColorDistances(rChannel, gChannel, bChannel, new System.Drawing.Point(point.Y, point.X), 10);
                        resultValues[point.Y, point.X, 0] = Convert.ToByte(newValue[2]);
                        resultValues[point.Y, point.X, 1] = Convert.ToByte(newValue[1]);
                        resultValues[point.Y, point.X, 2] = Convert.ToByte(newValue[0]);
                    }
                Image<Bgr, byte> img2 = new Image<Bgr, byte>(resultValues);
                img = img2.Mat;
            }





            //ImageViewer.Show(img2, String.Format(
            //                                      "Img Gray"));

            return resultValues;
        }
开发者ID:chovik,项目名称:master-thesis,代码行数:54,代码来源:MainWindow.xaml.cs

示例5: ComputeEdgeMagnitudes

        public static double[, ,] ComputeEdgeMagnitudes(Mat img)
        {
            var colorChannels = img.Split();

            var rSobelX = new Mat(img.Size, DepthType.Cv8U, 1);
            var rSobelY = new Mat(img.Size, DepthType.Cv8U, 1);
            var gSobelX = new Mat(img.Size, DepthType.Cv8U, 1);
            var gSobelY = new Mat(img.Size, DepthType.Cv8U, 1);
            var bSobelX = new Mat(img.Size, DepthType.Cv8U, 1);
            var bSobelY = new Mat(img.Size, DepthType.Cv8U, 1);

            CvInvoke.Sobel(colorChannels[2], rSobelX, DepthType.Cv8U, 1, 0);
            CvInvoke.Sobel(colorChannels[2], rSobelY, DepthType.Cv8U, 0, 1);

            CvInvoke.Sobel(colorChannels[1], gSobelX, DepthType.Cv8U, 1, 0);
            CvInvoke.Sobel(colorChannels[1], gSobelY, DepthType.Cv8U, 0, 1);

            CvInvoke.Sobel(colorChannels[0], bSobelX, DepthType.Cv8U, 1, 0);
            CvInvoke.Sobel(colorChannels[0], bSobelY, DepthType.Cv8U, 0, 1);


            int cols = img.Cols;
            int rows = img.Rows;

            var edgeValues = new double[rows, cols, 1];

            for (int rowIndex = 0; rowIndex < rows; rowIndex++)
            {
                for (int columnIndex = 0; columnIndex < cols; columnIndex++)
                {
                    var rX = rSobelX.GetData(rowIndex, columnIndex)[0];
                    var rY = rSobelY.GetData(rowIndex, columnIndex)[0];
                    var gX = gSobelX.GetData(rowIndex, columnIndex)[0];
                    var gY = gSobelY.GetData(rowIndex, columnIndex)[0];
                    var bX = bSobelX.GetData(rowIndex, columnIndex)[0];
                    var bY = bSobelY.GetData(rowIndex, columnIndex)[0];

                    var edgeRed = Math.Sqrt(rX * rX + rY * rY);
                    var edgeGreen = Math.Sqrt(gX * gX + gY * gY);
                    var edgeBlue = Math.Sqrt(bX * bX + bY * bY);

                    var edgeValue = (new double[] { edgeRed, edgeGreen, edgeBlue }).Max();
                    edgeValues[rowIndex, columnIndex, 0] = edgeValue;
                }
            }

            return edgeValues;
        }
开发者ID:chovik,项目名称:master-thesis,代码行数:48,代码来源:MainWindow.xaml.cs

示例6: SubSampling

        public async Task<byte[, ,]> SubSampling(Mat img, VectorOfPoint points)
        {
            //ProcessingImageWorkflow.Add(ToBitmapSource(img));
            //img = new Mat("diplomka.png", LoadImageType.Color);
            var colorChannels = img.Split();

            var rSobelX = new Mat(img.Size, DepthType.Cv8U, 1);
            var rSobelY = new Mat(img.Size, DepthType.Cv8U, 1);
            var gSobelX = new Mat(img.Size, DepthType.Cv8U, 1);
            var gSobelY = new Mat(img.Size, DepthType.Cv8U, 1);
            var bSobelX = new Mat(img.Size, DepthType.Cv8U, 1);
            var bSobelY = new Mat(img.Size, DepthType.Cv8U, 1);

            CvInvoke.Sobel(colorChannels[2], rSobelX, DepthType.Cv8U, 1, 0);
            CvInvoke.Sobel(colorChannels[2], rSobelY, DepthType.Cv8U, 0, 1);

            CvInvoke.Sobel(colorChannels[1], gSobelX, DepthType.Cv8U, 1, 0);
            CvInvoke.Sobel(colorChannels[1], gSobelY, DepthType.Cv8U, 0, 1);

            CvInvoke.Sobel(colorChannels[0], bSobelX, DepthType.Cv8U, 1, 0);
            CvInvoke.Sobel(colorChannels[0], bSobelY, DepthType.Cv8U, 0, 1);


            int cols = img.Cols;
            int rows = img.Rows;

            var edgeValues = new double[rows, cols];
            var edgeValuesTest = new byte[rows, cols, 1];

            for (int pointIndex = 0; pointIndex < points.Size; pointIndex++)
            {
                var point = points[pointIndex];

                var rX = rSobelX.GetData(point.Y, point.X)[0];
                var rY = rSobelY.GetData(point.Y, point.X)[0];
                var gX = gSobelX.GetData(point.Y, point.X)[0];
                var gY = gSobelY.GetData(point.Y, point.X)[0];
                var bX = bSobelX.GetData(point.Y, point.X)[0];
                var bY = bSobelY.GetData(point.Y, point.X)[0];

                var edgeRed = Math.Sqrt(rX * rX + rY * rY);
                var edgeGreen = Math.Sqrt(gX * gX + gY * gY);
                var edgeBlue = Math.Sqrt(bX * bX + bY * bY);

                var edgeValue = (new double[] { edgeRed, edgeGreen, edgeBlue }).Max();
                edgeValuesTest[point.Y, point.X, 0] = ToByte(edgeValue);
                edgeValues[point.Y, point.X] = edgeValue;
            }

            Image<Gray, byte> edGE = new Image<Gray, byte>(edgeValuesTest);

            await Dispatcher.BeginInvoke(_addImageToTheList,
                                    edGE.Mat);

            var samples = new byte[rows, cols, 3];

            var samplesList = new List<RGBSample>();
            var samplesHistogram = new RGBSample[256, 256, 256];

            for (int pointIndex = 0; pointIndex < points.Size; pointIndex++)
            {
                var point = points[pointIndex];

                var isLocalMinima = false;

                if (point.Y > 0
                    && point.Y < rows - 1
                    && point.X > 0
                    && point.X < cols - 1)
                {
                    isLocalMinima = IsLocalMinima(new System.Drawing.Point(point.Y, point.X), edgeValues);
                }

                if (!isLocalMinima)
                {
                    samples[point.Y, point.X, 2] = 255;
                    samples[point.Y, point.X, 1] = 255;
                    samples[point.Y, point.X, 0] = 255;
                }
                else
                {
                    var bytes = img.GetData(point.Y, point.X);

                    var r = bytes[2];
                    var g = bytes[1];
                    var b = bytes[0];

                    samples[point.Y, point.X, 2] = r;
                    samples[point.Y, point.X, 1] = g;
                    samples[point.Y, point.X, 0] = b;

                    if (samplesHistogram[r, g, b] == null)
                    {
                        var sample = new RGBSample() { Red = r, Green = g, Blue = b };
                        samplesHistogram[r, g, b] = sample;
                        samplesList.Add(sample);
                    }

                    samplesHistogram[r, g, b].Points.Add(new Point(point.Y, point.X));
                }
//.........这里部分代码省略.........
开发者ID:chovik,项目名称:master-thesis,代码行数:101,代码来源:MainWindow.xaml.cs

示例7: MakeImagesForArticle

        private static void MakeImagesForArticle()
        {
            var resizeK = 0.2;

            var dir = "Example/";

            var src = new Mat("0.bmp");
            var src_g = new Mat("0.bmp", LoadMode.GrayScale);

            var src_1 = new Mat("1.bmp");
            var src_1_g = new Mat("1.bmp", LoadMode.GrayScale);

            var background = new Mat("background.bmp");
            var background_g = new Mat("background.bmp", LoadMode.GrayScale);

            src.Resize(resizeK).ImWrite(dir + "0.png");
            src_g.Resize(resizeK).ImWrite(dir + "0 g.png");
            src_g.ThresholdStairs().Resize(resizeK).ImWrite(dir + "0 g th.png");

            var canny = new Mat();
            Cv2.Canny(src_g, canny, 50, 200);
            canny.Resize(0.5).ImWrite(dir + "0 canny.png");

            Mat[] src_channels;
            Cv2.Split(src, out src_channels);

            for (var i = 0; i < src_channels.Length; ++i)
            {
                var channels = Enumerable.Range(0, src_channels.Length).Select(j => new Mat(src_channels[0].Rows, src_channels[0].Cols, src_channels[0].Type())).ToArray();
                channels[i] = src_channels[i];
                var dst = new Mat();
                Cv2.Merge(channels, dst);
                dst.Resize(resizeK).ImWrite(dir + string.Format("0 ch{0}.png", i));
                src_channels[i].ThresholdStairs().Resize(resizeK).ImWrite(dir + string.Format("0 ch{0} th.png", i));
            }

            if (true)
            {
                src.Resize(0.4).ImWrite(dir + "0.png");
                src_1.Resize(0.4).ImWrite(dir + "1.png");
                background.Resize(0.4).ImWrite(dir + "bg.png");

                var dst_01 = new Mat();
                Cv2.Absdiff(src, src_1, dst_01);
                dst_01.Resize(resizeK).ImWrite(dir + "01.png");
                dst_01.Cut(new Rect(50, src.Height * 4 / 5 - 50, src.Width / 5, src.Height / 5)).ImWrite(dir + "01 part.png");
                dst_01.Cut(new Rect(50, src.Height * 4 / 5 - 50, src.Width / 5, src.Height / 5)).CvtColor(ColorConversion.RgbToGray).ImWrite(dir + "01 g.png");
                dst_01.CvtColor(ColorConversion.RgbToGray).ThresholdStairs().Resize(resizeK).ImWrite(dir + "01 g th.png");

                var dst_01_g = new Mat();
                Cv2.Absdiff(src_g, src_1_g, dst_01_g);
                dst_01_g.Cut(new Rect(50, src.Height * 4 / 5 - 50, src.Width / 5, src.Height / 5)).ImWrite(dir + "0g1g.png");
                dst_01_g.ThresholdStairs().Resize(resizeK).ImWrite(dir + "0g1g th.png");
            }

            if (true)
            {
                var dst_0b = new Mat();
                Cv2.Absdiff(src, background, dst_0b);
                dst_0b.Resize(0.6).ImWrite(dir + "0b.png");

                var dst_0b_g = new Mat();
                Cv2.Absdiff(src_g, background_g, dst_0b_g);
                dst_0b_g.Resize(0.3).ImWrite(dir + "0b g.png");
                dst_0b_g.ThresholdStairs().Resize(0.3).ImWrite(dir + "0b g th.png");
            }
            if (true)
            {
                var hsv_src = new Mat();
                Cv2.CvtColor(src, hsv_src, ColorConversion.RgbToHsv);


                var hsv_background = new Mat();
                Cv2.CvtColor(background, hsv_background, ColorConversion.RgbToHsv);

                var hsv_background_channels = hsv_background.Split();

                var hsv_src_channels = hsv_src.Split();

                if (true)
                {
                    var all = new Mat(src.ToIplImage(), true);
                    for (var i = 0; i < hsv_src_channels.Length; ++i)
                    {
                        hsv_src_channels[i].CvtColor(ColorConversion.GrayToRgb).CopyTo(all, new Rect(i * src.Width / 3, src.Height / 2, src.Width / 3, src.Height / 2));
                    }
                    src_g.CvtColor(ColorConversion.GrayToRgb).CopyTo(all, new Rect(src.Width / 2, 0, src.Width / 2, src.Height / 2));
                    all.Resize(0.3).ImWrite(dir + "all.png");
                }

                foreach (var pair in new[] { "h", "s", "v" }.Select((channel, index) => new { channel, index }))
                {
                    var diff = new Mat();
                    Cv2.Absdiff(hsv_src_channels[pair.index], hsv_background_channels[pair.index], diff);
                    diff.Resize(0.3).With_Title(pair.channel).ImWrite(dir + string.Format("0b {0}.png", pair.channel));
                    diff.ThresholdStairs().Resize(0.3).ImWrite(dir + string.Format("0b {0} th.png", pair.channel));

                    hsv_src_channels[pair.index].Resize(resizeK).With_Title(pair.channel).ImWrite(dir + string.Format("0 {0}.png", pair.channel));

                    foreach (var d in new[] { -100, -50, 50, 100 })
//.........这里部分代码省略.........
开发者ID:DrReiz,项目名称:DrReiz.Robo-Gamer,代码行数:101,代码来源:Zuma.cs


注:本文中的Mat.Split方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。