当前位置: 首页>>代码示例>>C#>>正文


C# Mat.CopyTo方法代码示例

本文整理汇总了C#中Mat.CopyTo方法的典型用法代码示例。如果您正苦于以下问题:C# Mat.CopyTo方法的具体用法?C# Mat.CopyTo怎么用?C# Mat.CopyTo使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Mat的用法示例。


在下文中一共展示了Mat.CopyTo方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: usingCppInterface1

        private static void usingCppInterface1()
        {
            // Cv2.ImRead
            using (var src = new Mat(@"..\..\Images\Penguin.Png", LoadMode.AnyDepth | LoadMode.AnyColor))
            using (var dst = new Mat())
            {
                src.CopyTo(dst);

                for (var y = 0; y < src.Height; y++)
                {
                    for (var x = 0; x < src.Width; x++)
                    {
                        var pixel = src.Get<Vec3b>(y, x);
                        var newPixel = new Vec3b
                        {
                            Item0 = (byte)(255 - pixel.Item0), // B
                            Item1 = (byte)(255 - pixel.Item1), // G
                            Item2 = (byte)(255 - pixel.Item2) // R
                        };
                        dst.Set(y, x, newPixel);
                    }
                }

                // [Cpp] Accessing Pixel
                // https://github.com/shimat/opencvsharp/wiki/%5BCpp%5D-Accessing-Pixel

                //Cv2.NamedWindow();
                //Cv2.ImShow();
                using (new Window("C++ Interface: Src", image: src))
                using (new Window("C++ Interface: Dst", image: dst))
                {
                    Cv2.WaitKey(0);
                }
            }
        }
开发者ID:kauser-cse-buet,项目名称:OpenCVSharp-Samples,代码行数:35,代码来源:Program.cs

示例2: FourierTransform

        public ActionResult FourierTransform(HttpPostedFileBase imageData)
        {
            try
            {
                if (imageData == null) { throw new ArgumentException("File is not exist."); }

                using (var img = Mat.FromStream(imageData.InputStream, LoadMode.Color))
                using(var padded = new Mat())
                {
                    using (var result = new Mat())
                    {
                        byte[] imgBytes = img.ToBytes(".png");
                        string base64Img = Convert.ToBase64String(imgBytes);
                        ViewBag.Base64Img = base64Img;

                        int m = Cv2.GetOptimalDFTSize(img.Rows);
                        int n = Cv2.GetOptimalDFTSize(img.Cols);
                        Cv2.CopyMakeBorder(img, padded, 0, m - img.Rows, 0, n - img.Cols, BorderType.Constant, Scalar.All(0));

                        var planes = new Mat[]{};
                        var complexI = new Mat();
                        Cv2.Merge(planes, complexI);

                        Cv2.Dft(complexI, complexI);

                        // Compute the magnitude
                        planes = Cv2.Split(complexI);
                        var magI = new Mat();
                        Cv2.Magnitude(planes[0], planes[1], magI);

                        magI += Scalar.All(1);
                        Cv2.Log(magI, magI);

                        //magI = magI(Rect(0, 0, magI.Cols & -2, magI.Rows & -2));

                        int cx = magI.Cols / 2;
                        int cy = magI.Rows / 2;

                        var q0 = new Mat(magI, new Rect(0, 0, cx, cy));
                        var q1 = new Mat(magI, new Rect(cx, 0, cx, cy));
                        var q2 = new Mat(magI, new Rect(0, cy, cx, cy));
                        var q3 = new Mat(magI, new Rect(cx, cy, cx, cy));

                        var tmp = new Mat();
                        q0.CopyTo(tmp);
                        q3.CopyTo(q0);
                        tmp.CopyTo(q3);

                        q1.CopyTo(tmp);
                        q2.CopyTo(q1);
                        tmp.CopyTo(q2);

                        Cv2.Normalize(magI, magI, 0, 1, NormType.MinMax);

                        byte[] resultBytes = magI.ToBytes(".png");
                        string base64Result = Convert.ToBase64String(resultBytes);
                        ViewBag.Base64Result = base64Result;
                    }
                }
            }
            catch (Exception ex)
            {
                Console.WriteLine(ex.ToString());
            }

            return View();
        }
开发者ID:takuya1981,项目名称:OpenCVSample,代码行数:67,代码来源:HomeController.cs

示例3: Dft

        public static void Dft(string path)
        {
            Mat img = Cv2.ImRead(path, LoadMode.GrayScale);

            // expand input image to optimal size
            Mat padded = new Mat();
            int m = Cv2.GetOptimalDFTSize(img.Rows);
            int n = Cv2.GetOptimalDFTSize(img.Cols); // on the border add zero values
            Cv2.CopyMakeBorder(img, padded, 0, m - img.Rows, 0, n - img.Cols, BorderType.Constant, Scalar.All(0));

            // Add to the expanded another plane with zeros
            Mat paddedF32 = new Mat();
            padded.ConvertTo(paddedF32, MatType.CV_32F);
            Mat[] planes = { paddedF32, Mat.Zeros(padded.Size(), MatType.CV_32F) };
            Mat complex = new Mat();
            Cv2.Merge(planes, complex);

            // this way the result may fit in the source matrix
            Mat dft = new Mat();
            Cv2.Dft(complex, dft);

            // compute the magnitude and switch to logarithmic scale
            // => log(1 + sqrt(Re(DFT(I))^2 + Im(DFT(I))^2))
            Mat[] dftPlanes;
            Cv2.Split(dft, out dftPlanes);  // planes[0] = Re(DFT(I), planes[1] = Im(DFT(I))

            // planes[0] = magnitude
            Mat magnitude = new Mat();
            Cv2.Magnitude(dftPlanes[0], dftPlanes[1], magnitude);

            magnitude += Scalar.All(1);  // switch to logarithmic scale
            Cv2.Log(magnitude, magnitude);

            // crop the spectrum, if it has an odd number of rows or columns
            Mat spectrum = magnitude[
                new Rect(0, 0, magnitude.Cols & -2, magnitude.Rows & -2)];

            // rearrange the quadrants of Fourier image  so that the origin is at the image center
            int cx = spectrum.Cols / 2;
            int cy = spectrum.Rows / 2;

            Mat q0 = new Mat(spectrum, new Rect(0, 0, cx, cy));   // Top-Left - Create a ROI per quadrant
            Mat q1 = new Mat(spectrum, new Rect(cx, 0, cx, cy));  // Top-Right
            Mat q2 = new Mat(spectrum, new Rect(0, cy, cx, cy));  // Bottom-Left
            Mat q3 = new Mat(spectrum, new Rect(cx, cy, cx, cy)); // Bottom-Right

            // swap quadrants (Top-Left with Bottom-Right)
            Mat tmp = new Mat();
            q0.CopyTo(tmp);
            q3.CopyTo(q0);
            tmp.CopyTo(q3);

            // swap quadrant (Top-Right with Bottom-Left)
            q1.CopyTo(tmp);
            q2.CopyTo(q1);
            tmp.CopyTo(q2);

            // Transform the matrix with float values into a
            Cv2.Normalize(spectrum, spectrum, 0, 1, NormType.MinMax);

            // Show the result
            Cv2.ImShow("Spectrum Magnitude", spectrum);
            Cv2.WaitKey(0);
            Cv2.DestroyAllWindows();
        }
开发者ID:Muraad,项目名称:DynamoOpenCV,代码行数:65,代码来源:OpenCv.cs

示例4: watershedExample

        /// <summary>
        /// https://github.com/Itseez/opencv_extra/blob/master/learning_opencv_v2/ch9_watershed.cpp
        /// </summary>
        private static void watershedExample()
        {
            var src = new Mat(@"..\..\Images\corridor.jpg", LoadMode.AnyDepth | LoadMode.AnyColor);
            var srcCopy = new Mat();
            src.CopyTo(srcCopy);

            var markerMask = new Mat();
            Cv2.CvtColor(srcCopy, markerMask, ColorConversion.BgrToGray);

            var imgGray = new Mat();
            Cv2.CvtColor(markerMask, imgGray, ColorConversion.GrayToBgr);
            markerMask = new Mat(markerMask.Size(), markerMask.Type(), s: Scalar.All(0));

            var sourceWindow = new Window("Source (Select areas by mouse and then press space)")
            {
                Image = srcCopy
            };

            var previousPoint = new Point(-1, -1);
            sourceWindow.OnMouseCallback += (@event, x, y, flags) =>
            {
                if (x < 0 || x >= srcCopy.Cols || y < 0 || y >= srcCopy.Rows)
                {
                    return;
                }

                if (@event == MouseEvent.LButtonUp || !flags.HasFlag(MouseEvent.FlagLButton))
                {
                    previousPoint = new Point(-1, -1);
                }
                else if (@event == MouseEvent.LButtonDown)
                {
                    previousPoint = new Point(x, y);
                }
                else if (@event == MouseEvent.MouseMove && flags.HasFlag(MouseEvent.FlagLButton))
                {
                    var pt = new Point(x, y);
                    if (previousPoint.X < 0)
                    {
                        previousPoint = pt;
                    }

                    Cv2.Line(img: markerMask, pt1: previousPoint, pt2: pt, color: Scalar.All(255), thickness: 5);
                    Cv2.Line(img: srcCopy, pt1: previousPoint, pt2: pt, color: Scalar.All(255), thickness: 5);
                    previousPoint = pt;
                    sourceWindow.Image = srcCopy;
                }
            };

            var rnd = new Random();

            for (; ; )
            {
                var key = Cv2.WaitKey(0);

                if ((char)key == 27) // ESC
                {
                    break;
                }

                if ((char)key == 'r') // Reset
                {
                    markerMask = new Mat(markerMask.Size(), markerMask.Type(), s: Scalar.All(0));
                    src.CopyTo(srcCopy);
                    sourceWindow.Image = srcCopy;
                }

                if ((char)key == 'w' || (char)key == ' ') // Apply watershed
                {
                    Point[][] contours; //vector<vector<Point>> contours;
                    HiearchyIndex[] hierarchyIndexes; //vector<Vec4i> hierarchy;
                    Cv2.FindContours(
                        markerMask,
                        out contours,
                        out hierarchyIndexes,
                        mode: ContourRetrieval.CComp,
                        method: ContourChain.ApproxSimple);

                    if (contours.Length == 0)
                    {
                        continue;
                    }

                    var markers = new Mat(markerMask.Size(), MatType.CV_32S, s: Scalar.All(0));

                    var componentCount = 0;
                    var contourIndex = 0;
                    while ((contourIndex >= 0))
                    {
                        Cv2.DrawContours(
                            markers,
                            contours,
                            contourIndex,
                            color: Scalar.All(componentCount+1),
                            thickness: -1,
                            lineType: LineType.Link8,
                            hierarchy: hierarchyIndexes,
//.........这里部分代码省略.........
开发者ID:kauser-cse-buet,项目名称:OpenCVSharp-Samples,代码行数:101,代码来源:Program.cs

示例5: detectBarcode

        private static string detectBarcode(string fileName, double thresh, bool debug = false, double rotation = 0)
        {
            Console.WriteLine("\nProcessing: {0}", fileName);

            // load the image and convert it to grayscale
            var image = new Mat(fileName);

            if (rotation != 0)
            {
                rotateImage(image, image, rotation, 1);
            }

            if (debug)
            {
                Cv2.ImShow("Source", image);
                Cv2.WaitKey(1); // do events
            }

            var gray = new Mat();
            var channels = image.Channels();
            if (channels > 1)
            {
                Cv2.CvtColor(image, gray, ColorConversion.BgrToGray);
            }
            else
            {
                image.CopyTo(gray);
            }

            // compute the Scharr gradient magnitude representation of the images
            // in both the x and y direction
            var gradX = new Mat();
            Cv2.Sobel(gray, gradX, MatType.CV_32F, xorder: 1, yorder: 0, ksize: -1);
            //Cv2.Scharr(gray, gradX, MatType.CV_32F, xorder: 1, yorder: 0);

            var gradY = new Mat();
            Cv2.Sobel(gray, gradY, MatType.CV_32F, xorder: 0, yorder: 1, ksize: -1);
            //Cv2.Scharr(gray, gradY, MatType.CV_32F, xorder: 0, yorder: 1);

            // subtract the y-gradient from the x-gradient
            var gradient = new Mat();
            Cv2.Subtract(gradX, gradY, gradient);
            Cv2.ConvertScaleAbs(gradient, gradient);

            if (debug)
            {
                Cv2.ImShow("Gradient", gradient);
                Cv2.WaitKey(1); // do events
            }

            // blur and threshold the image
            var blurred = new Mat();
            Cv2.Blur(gradient, blurred, new Size(9, 9));

            var threshImage = new Mat();
            Cv2.Threshold(blurred, threshImage, thresh, 255, ThresholdType.Binary);

            if (debug)
            {
                Cv2.ImShow("Thresh", threshImage);
                Cv2.WaitKey(1); // do events
            }

            // construct a closing kernel and apply it to the thresholded image
            var kernel = Cv2.GetStructuringElement(StructuringElementShape.Rect, new Size(21, 7));
            var closed = new Mat();
            Cv2.MorphologyEx(threshImage, closed, MorphologyOperation.Close, kernel);

            if (debug)
            {
                Cv2.ImShow("Closed", closed);
                Cv2.WaitKey(1); // do events
            }

            // perform a series of erosions and dilations
            Cv2.Erode(closed, closed, null, iterations: 4);
            Cv2.Dilate(closed, closed, null, iterations: 4);

            if (debug)
            {
                Cv2.ImShow("Erode & Dilate", closed);
                Cv2.WaitKey(1); // do events
            }

            //find the contours in the thresholded image, then sort the contours
            //by their area, keeping only the largest one

            Point[][] contours;
            HiearchyIndex[] hierarchyIndexes;
            Cv2.FindContours(
                closed,
                out contours,
                out hierarchyIndexes,
                mode: ContourRetrieval.CComp,
                method: ContourChain.ApproxSimple);

            if (contours.Length == 0)
            {
                throw new NotSupportedException("Couldn't find any object in the image.");
            }
//.........这里部分代码省略.........
开发者ID:kauser-cse-buet,项目名称:OpenCVSharp-Samples,代码行数:101,代码来源:Program.cs

示例6: getBarcodeText

        private static string getBarcodeText(Mat barcode)
        {
            // `ZXing.Net` needs a white space around the barcode
            var barcodeWithWhiteSpace = new Mat(new Size(barcode.Width + 30, barcode.Height + 30), MatType.CV_8U, Scalar.White);
            var drawingRect = new Rect(new Point(15, 15), new Size(barcode.Width, barcode.Height));
            var roi = barcodeWithWhiteSpace[drawingRect];
            barcode.CopyTo(roi);

            Cv2.ImShow("Enhanced Barcode", barcodeWithWhiteSpace);
            Cv2.WaitKey(1); // do events

            return decodeBarcodeText(barcodeWithWhiteSpace.ToBitmap());
        }
开发者ID:kauser-cse-buet,项目名称:OpenCVSharp-Samples,代码行数:13,代码来源:Program.cs


注:本文中的Mat.CopyTo方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。