本文整理汇总了C#中Mat.SetTo方法的典型用法代码示例。如果您正苦于以下问题:C# Mat.SetTo方法的具体用法?C# Mat.SetTo怎么用?C# Mat.SetTo使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Mat
的用法示例。
在下文中一共展示了Mat.SetTo方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: FindMatch
public static void FindMatch(Mat modelImage, Mat observedImage, out long matchTime, out VectorOfKeyPoint modelKeyPoints, out VectorOfKeyPoint observedKeyPoints, VectorOfVectorOfDMatch matches, out Mat mask, out Mat homography)
{
int k = 2;
double uniquenessThreshold = 0.80;
Stopwatch watch;
homography = null;
modelKeyPoints = new VectorOfKeyPoint();
observedKeyPoints = new VectorOfKeyPoint();
using (UMat uModelImage = modelImage.GetUMat(AccessType.Read))
using (UMat uObservedImage = observedImage.GetUMat(AccessType.Read))
{
KAZE featureDetector = new KAZE();
//extract features from the object image
Mat modelDescriptors = new Mat();
featureDetector.DetectAndCompute(uModelImage, null, modelKeyPoints, modelDescriptors, false);
watch = Stopwatch.StartNew();
// extract features from the observed image
Mat observedDescriptors = new Mat();
featureDetector.DetectAndCompute(uObservedImage, null, observedKeyPoints, observedDescriptors, false);
BFMatcher matcher = new BFMatcher(DistanceType.L2);
matcher.Add(modelDescriptors);
matcher.KnnMatch(observedDescriptors, matches, k, null);
mask = new Mat(matches.Size, 1, DepthType.Cv8U, 1);
mask.SetTo(new MCvScalar(255));
Features2DToolbox.VoteForUniqueness(matches, uniquenessThreshold, mask);
int nonZeroCount = CvInvoke.CountNonZero(mask);
if (nonZeroCount >= 4)
{
nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints,
matches, mask, 1.5, 20);
if (nonZeroCount >= 4)
homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(modelKeyPoints,
observedKeyPoints, matches, mask, 2);
}
watch.Stop();
}
matchTime = watch.ElapsedMilliseconds;
}
示例2: FilterTiles
public void FilterTiles(Mat image, Mat modifiedMat)
{
CvInvoke.Imshow("0", image);
Stopwatch sw1 = new Stopwatch();
sw1.Start();
Mat laplaced = new Mat();
CvInvoke.CvtColor(image, laplaced, Emgu.CV.CvEnum.ColorConversion.Bgr2Gray);
Mat greyResult = laplaced.Clone();
Mat greySource = laplaced.Clone();
Mat cannySrc = new Mat();
//if not half inch, do canny and subtract to separate tiles better. Basically "sharpens" the edge
if (scan.TileSettings.CannyEdges)
{
//create canny image, these parameters could be adjusted probably?
CvInvoke.Canny(greySource, greyResult, 50, 150);
//dilate canny
CvInvoke.Dilate(greyResult, greyResult, null, new System.Drawing.Point(1, 1), scan.TileSettings.CannyDilate, BorderType.Default, CvInvoke.MorphologyDefaultBorderValue);
CvInvoke.Erode(greyResult, greyResult, null, new System.Drawing.Point(1, 1), scan.TileSettings.CannyDilate, BorderType.Default, CvInvoke.MorphologyDefaultBorderValue);
CvInvoke.Imshow("1a", greyResult);
//subtract dilated canny from source to get separation
CvInvoke.Subtract(greySource, greyResult, greyResult);
greySource = greyResult.Clone();
CvInvoke.Imshow("1b", greyResult);
}
if (scan.TileSettings.ThresholdEdges)
{
Mat edges = new Mat();
CvInvoke.Threshold(greyResult, edges, (float)thresholdTrackbar.Value, 0, ThresholdType.ToZero);
CvInvoke.Subtract(greySource, edges, greyResult);
CvInvoke.Erode(greyResult, greyResult, null, new System.Drawing.Point(1, 1), 2, BorderType.Default, CvInvoke.MorphologyDefaultBorderValue);
CvInvoke.Imshow("pres-1c", greyResult);
}
//perform distance transform
CvInvoke.DistanceTransform(greyResult, greyResult, null, DistType.L2, 5);
//normalize the image to bring out the peaks
CvInvoke.Normalize(greyResult, greyResult, 0, 1, NormType.MinMax);
CvInvoke.Imshow("2", greyResult);
//threshold the image, different thresholds for different tiles
CvInvoke.Threshold(greyResult, greyResult, scan.TileSettings.ThresholdVal, 1, ThresholdType.Binary);
CvInvoke.Imshow("3", greyResult);
//erode to split the blobs
CvInvoke.Erode(greyResult, greyResult, null, new System.Drawing.Point(-1, -1), scan.TileSettings.ThresholdErode, BorderType.Default, CvInvoke.MorphologyDefaultBorderValue);
//convert to 8 bit unsigned needed for canny
greyResult.ConvertTo(greyResult, DepthType.Cv8U);
VectorOfVectorOfPoint markers = new VectorOfVectorOfPoint();
//create 32bit, single channel image for result of markers
Mat markerImage = new Mat(greyResult.Size, DepthType.Cv32S, 1);
//set image to 0
markerImage.SetTo(new MCvScalar(0, 0, 0));
//find the contours
CvInvoke.FindContours(greyResult, markers, null, RetrType.External, ChainApproxMethod.LinkRuns);
//label the markers from 1 -> n, the rest of the image should remain 0
for (int i = 0; i < markers.Size; i++)
CvInvoke.DrawContours(markerImage, markers, i, new MCvScalar(i + 1, i + 1, i + 1), -1);
ScalarArray mult = new ScalarArray(5000);
Mat markerVisual = new Mat();
CvInvoke.Multiply(markerImage, mult, markerVisual);
CvInvoke.Imshow("4", markerVisual);
//draw the background marker
CvInvoke.Circle(markerImage,
new System.Drawing.Point(5, 5),
3,
new MCvScalar(255, 255, 255),
-1);
//convert to 3 channel
Mat convertedOriginal = new Mat();
//use canny modified if 3/4", or use the gray image for others
CvInvoke.CvtColor(greySource, convertedOriginal, ColorConversion.Gray2Bgr);
//watershed!!
CvInvoke.Watershed(convertedOriginal, markerImage);
//visualize
CvInvoke.Multiply(markerImage, mult, markerVisual);
CvInvoke.Imshow("5", markerVisual);
//get contours to get the actual tiles now that they are separate...
//.........这里部分代码省略.........
示例3: FindMatch
public static void FindMatch(Mat modelImage, Mat observedImage, out long matchTime, out VectorOfKeyPoint modelKeyPoints, out VectorOfKeyPoint observedKeyPoints, VectorOfVectorOfDMatch matches, out Mat mask, out Mat homography)
{
int k = 2;
double uniquenessThreshold = 0.8;
double hessianThresh = 300;
Stopwatch watch;
homography = null;
modelKeyPoints = new VectorOfKeyPoint();
observedKeyPoints = new VectorOfKeyPoint();
#if !__IOS__
if ( CudaInvoke.HasCuda)
{
CudaSURF surfCuda = new CudaSURF((float) hessianThresh);
using (GpuMat gpuModelImage = new GpuMat(modelImage))
//extract features from the object image
using (GpuMat gpuModelKeyPoints = surfCuda.DetectKeyPointsRaw(gpuModelImage, null))
using (GpuMat gpuModelDescriptors = surfCuda.ComputeDescriptorsRaw(gpuModelImage, null, gpuModelKeyPoints))
using (CudaBFMatcher matcher = new CudaBFMatcher(DistanceType.L2))
{
surfCuda.DownloadKeypoints(gpuModelKeyPoints, modelKeyPoints);
watch = Stopwatch.StartNew();
// extract features from the observed image
using (GpuMat gpuObservedImage = new GpuMat(observedImage))
using (GpuMat gpuObservedKeyPoints = surfCuda.DetectKeyPointsRaw(gpuObservedImage, null))
using (GpuMat gpuObservedDescriptors = surfCuda.ComputeDescriptorsRaw(gpuObservedImage, null, gpuObservedKeyPoints))
//using (GpuMat tmp = new GpuMat())
//using (Stream stream = new Stream())
{
matcher.KnnMatch(gpuObservedDescriptors, gpuModelDescriptors, matches, k);
surfCuda.DownloadKeypoints(gpuObservedKeyPoints, observedKeyPoints);
mask = new Mat(matches.Size, 1, DepthType.Cv8U, 1);
mask.SetTo(new MCvScalar(255));
Features2DToolbox.VoteForUniqueness(matches, uniquenessThreshold, mask);
int nonZeroCount = CvInvoke.CountNonZero(mask);
if (nonZeroCount >= 4)
{
nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints,
matches, mask, 1.5, 20);
if (nonZeroCount >= 4)
homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(modelKeyPoints,
observedKeyPoints, matches, mask, 2);
}
}
watch.Stop();
}
}
else
#endif
{
using (UMat uModelImage = modelImage.ToUMat(AccessType.Read))
using (UMat uObservedImage = observedImage.ToUMat(AccessType.Read))
{
SURF surfCPU = new SURF(hessianThresh);
//extract features from the object image
UMat modelDescriptors = new UMat();
surfCPU.DetectAndCompute(uModelImage, null, modelKeyPoints, modelDescriptors, false);
watch = Stopwatch.StartNew();
// extract features from the observed image
UMat observedDescriptors = new UMat();
surfCPU.DetectAndCompute(uObservedImage, null, observedKeyPoints, observedDescriptors, false);
BFMatcher matcher = new BFMatcher(DistanceType.L2);
matcher.Add(modelDescriptors);
matcher.KnnMatch(observedDescriptors, matches, k, null);
mask = new Mat(matches.Size, 1, DepthType.Cv8U, 1);
mask.SetTo(new MCvScalar(255));
Features2DToolbox.VoteForUniqueness(matches, uniquenessThreshold, mask);
int nonZeroCount = CvInvoke.CountNonZero(mask);
if (nonZeroCount >= 4)
{
nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints,
matches, mask, 1.5, 20);
if (nonZeroCount >= 4)
homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(modelKeyPoints,
observedKeyPoints, matches, mask, 2);
}
watch.Stop();
}
}
matchTime = watch.ElapsedMilliseconds;
}
示例4: Start
// Use this for initialization
void Start()
{
Mat img = new Mat(new Size(640, 240), DepthType.Cv8U, 3);
img.SetTo(new MCvScalar());
String openclStr = "None";
if (CvInvoke.HaveOpenCL)
{
//StringBuilder builder = new StringBuilder();
using (VectorOfOclPlatformInfo oclPlatformInfos = OclInvoke.GetPlatformsInfo())
{
if (oclPlatformInfos.Size > 0)
{
PlatformInfo platformInfo = oclPlatformInfos[0];
openclStr = platformInfo.ToString();
}
}
}
CvInvoke.PutText(img, String.Format("Emgu CV for Unity {0}", Emgu.Util.Platform.OperationSystem), new System.Drawing.Point(10, 60), Emgu.CV.CvEnum.FontFace.HersheyDuplex,
1.0, new MCvScalar(0, 255, 0));
CvInvoke.PutText(img, String.Format("OpenCL: {0}",openclStr), new System.Drawing.Point(10, 120), Emgu.CV.CvEnum.FontFace.HersheyDuplex,
1.0, new MCvScalar(0, 0, 255));
Texture2D texture = TextureConvert.InputArrayToTexture2D(img, FlipType.Vertical);
this.GetComponent<GUITexture>().texture = texture;
this.GetComponent<GUITexture>().pixelInset = new Rect(-img.Width / 2, -img.Height / 2, img.Width, img.Height);
}
示例5: TryFindHomography
private Mat TryFindHomography(VectorOfKeyPoint modelKeyPoints, VectorOfKeyPoint observedKeyPoints,
VectorOfVectorOfDMatch matches)
{
var mask = new Mat(matches.Size, 1, DepthType.Cv8U, 1);
mask.SetTo(new MCvScalar(255));
try
{
Features2DToolbox.VoteForUniqueness(matches, threshold, mask);
var nonZeroCount = CvInvoke.CountNonZero(mask);
if (nonZeroCount < 4)
{
return null;
}
nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints,
matches, mask, 1.5, 20);
if (nonZeroCount >= 4)
{
return Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(modelKeyPoints,
observedKeyPoints, matches, mask, 2);
}
}
catch (Exception)
{
return null;
}
return null;
}
示例6: TestMatEquals
public void TestMatEquals()
{
Mat m1 = new Mat(640, 320, DepthType.Cv8U, 3);
m1.SetTo(new MCvScalar(1, 2, 3));
Mat m2 = new Mat(640, 320, DepthType.Cv8U, 3);
m2.SetTo(new MCvScalar(1, 2, 3));
EmguAssert.IsTrue(m1.Equals(m2));
}
示例7: FilterPlate
private static UMat FilterPlate(UMat plate)
{
UMat thresh = new UMat();
CvInvoke.Threshold(plate, thresh, 120, 255, ThresholdType.BinaryInv);
//Image<Gray, Byte> thresh = plate.ThresholdBinaryInv(new Gray(120), new Gray(255));
Size plateSize = plate.Size;
using (Mat plateMask = new Mat(plateSize.Height, plateSize.Width, DepthType.Cv8U, 1))
using (Mat plateCanny = new Mat())
using (VectorOfVectorOfPoint contours = new VectorOfVectorOfPoint())
{
plateMask.SetTo(new MCvScalar(255.0));
CvInvoke.Canny(plate, plateCanny, 100, 50);
CvInvoke.FindContours(plateCanny, contours, null, RetrType.External, ChainApproxMethod.ChainApproxSimple);
int count = contours.Size;
for (int i = 1; i < count; i++)
{
using (VectorOfPoint contour = contours[i])
{
Rectangle rect = CvInvoke.BoundingRectangle(contour);
if (rect.Height > (plateSize.Height >> 1))
{
rect.X -= 1;
rect.Y -= 1;
rect.Width += 2;
rect.Height += 2;
Rectangle roi = new Rectangle(Point.Empty, plate.Size);
rect.Intersect(roi);
CvInvoke.Rectangle(plateMask, rect, new MCvScalar(), -1);
//plateMask.Draw(rect, new Gray(0.0), -1);
}
}
}
thresh.SetTo(new MCvScalar(), plateMask);
}
CvInvoke.Erode(thresh, thresh, null, new Point(-1, -1), 1, BorderType.Constant,
CvInvoke.MorphologyDefaultBorderValue);
CvInvoke.Dilate(thresh, thresh, null, new Point(-1, -1), 1, BorderType.Constant,
CvInvoke.MorphologyDefaultBorderValue);
return thresh;
}
示例8: ApplyFilter
public void ApplyFilter(Mat src)
{
CvInvoke.CvtColor(src, src, ColorConversion.Bgr2Hsv);
Mat threshold = new Mat(src.Height, src.Width, src.Depth, src.NumberOfChannels);
MCvScalar min = new MCvScalar(m_hmin, m_smin, m_vmin);
MCvScalar max = new MCvScalar(m_hmax, m_smax, m_vmax);
CvInvoke.InRange(src, new ScalarArray(min), new ScalarArray(max), threshold);
Mat element = CvInvoke.GetStructuringElement(ElementShape.Rectangle, new Size(3,3), Point.Empty);
CvInvoke.Erode(threshold, threshold, element, Point.Empty, 1, BorderType.Constant, new MCvScalar(1.0f));
CvInvoke.Canny(threshold, threshold, 100, 255);
VectorOfVectorOfPoint contours = new VectorOfVectorOfPoint();
Mat hierarchy = new Mat();
CvInvoke.FindContours(threshold, contours, hierarchy, RetrType.Tree, ChainApproxMethod.ChainApproxSimple, Point.Empty);
Mat draw = new Mat(src.Height, src.Width, src.Depth, 1);
draw.SetTo(new MCvScalar(0.0));
int i = 0;
//Debug.Log("CONTOURS");
var contoursArray = contours.ToArrayOfArray();
foreach(Point[] contour in contoursArray)
{
CvInvoke.DrawContours(draw, contours, i, new MCvScalar(255.0), 1, LineType.EightConnected, null, int.MaxValue, Point.Empty);
double a = CvInvoke.ContourArea(new VectorOfPoint(contour));
//Debug.Log("Contour: " + a);
i++;
}
//Emgu.CV.UI.ImageViewer.Show(draw, "test");
if(m_onFrame != null) m_onFrame.Invoke(draw);
}
示例9: TestMinEnclosingCircle
public void TestMinEnclosingCircle()
{
#region generate random points
System.Random r = new Random();
int sampleCount = 100;
Ellipse modelEllipse = new Ellipse(new PointF(200, 200), new SizeF(90, 60), -60);
PointF[] pts = PointCollection.GeneratePointCloud(modelEllipse, sampleCount);
#endregion
Stopwatch watch = Stopwatch.StartNew();
CircleF circle = CvInvoke.MinEnclosingCircle(pts);
watch.Stop();
#region draw the points and the circle
Mat img = new Mat(400, 400, DepthType.Cv8U, 3);
img.SetTo(new MCvScalar(255, 255, 255));
foreach (PointF p in pts)
CvInvoke.Circle(img, Point.Round(p), 2, new MCvScalar(0, 255, 0), 1);
#endregion
//Emgu.CV.UI.ImageViewer.Show(img, String.Format("Time used: {0} milliseconds", watch.ElapsedMilliseconds));
}
示例10: TestMinAreaRect
public void TestMinAreaRect()
{
#region generate random points
System.Random r = new Random();
int sampleCount = 100;
Ellipse modelEllipse = new Ellipse(new PointF(200, 200), new SizeF(90, 60), -60);
PointF[] pts = PointCollection.GeneratePointCloud(modelEllipse, sampleCount);
#endregion
Stopwatch watch = Stopwatch.StartNew();
RotatedRect box = CvInvoke.MinAreaRect(pts);
watch.Stop();
#region draw the points and the box
Mat img = new Mat(400, 400, DepthType.Cv8U, 3);
img.SetTo(new MCvScalar(255, 255, 255));
#if NETFX_CORE
Point[] vertices = Extensions.ConvertAll(box.GetVertices(), Point.Round);
#else
Point[] vertices = Array.ConvertAll(box.GetVertices(), Point.Round);
#endif
CvInvoke.Polylines(img, vertices, true, new MCvScalar(0, 0, 255), 1);
foreach (PointF p in pts)
CvInvoke.Circle(img, Point.Round(p), 2, new MCvScalar(0, 255, 0), 1);
#endregion
//Emgu.CV.UI.ImageViewer.Show(img, String.Format("Time used: {0} milliseconds", watch.ElapsedMilliseconds));
}
示例11: TestEllipseFitting
public void TestEllipseFitting()
{
#region generate random points
System.Random r = new Random();
int sampleCount = 100;
Ellipse modelEllipse = new Ellipse(new PointF(200, 200), new SizeF(150, 60), 90);
PointF[] pts = PointCollection.GeneratePointCloud(modelEllipse, sampleCount);
#endregion
Stopwatch watch = Stopwatch.StartNew();
Ellipse fittedEllipse = PointCollection.EllipseLeastSquareFitting(pts);
watch.Stop();
#region draw the points and the fitted ellips
Mat img = new Mat(400, 400, DepthType.Cv8U, 3);
img.SetTo(new MCvScalar(255, 255, 255));
foreach (PointF p in pts)
CvInvoke.Circle(img, Point.Round(p), 2, new MCvScalar(0, 255, 0), 1);
RotatedRect rect = fittedEllipse.RotatedRect;
rect.Angle += 90; //the detected ellipse was off by 90 degree
CvInvoke.Ellipse(img, rect, new MCvScalar(0, 0, 255), 2);
#endregion
//Emgu.CV.UI.ImageViewer.Show(img, String.Format("Time used: {0} milliseconds", watch.ElapsedMilliseconds));
}
示例12: TestConvexHull
public void TestConvexHull()
{
#region Create some random points
Random r = new Random();
PointF[] pts = new PointF[200];
for (int i = 0; i < pts.Length; i++)
{
pts[i] = new PointF((float)(100 + r.NextDouble() * 400), (float)(100 + r.NextDouble() * 400));
}
#endregion
Mat img = new Mat(600, 600, DepthType.Cv8U, 3);
img.SetTo(new MCvScalar(255.0, 255.0, 255.0));
//Draw the points
foreach (PointF p in pts)
CvInvoke.Circle(img, Point.Round(p), 3, new MCvScalar(0.0, 0.0, 0.0));
//Find and draw the convex hull
Stopwatch watch = Stopwatch.StartNew();
PointF[] hull = CvInvoke.ConvexHull(pts, true);
watch.Stop();
CvInvoke.Polylines(
img,
#if NETFX_CORE
Extensions.ConvertAll<PointF, Point>(hull, Point.Round),
#else
Array.ConvertAll<PointF, Point>(hull, Point.Round),
#endif
true, new MCvScalar(255.0, 0.0, 0.0));
//Emgu.CV.UI.ImageViewer.Show(img, String.Format("Convex Hull Computed in {0} milliseconds", watch.ElapsedMilliseconds));
}
示例13: TestDenseHistogram2
public void TestDenseHistogram2()
{
Mat img = new Mat(400, 400, DepthType.Cv8U, 3);
CvInvoke.Randu(img, new MCvScalar(), new MCvScalar(255,255,255));
Mat hist = new Mat();
using (VectorOfMat vms = new VectorOfMat(img))
{
CvInvoke.CalcHist(vms, new int[] {0, 1, 2}, null, hist, new int[] {20, 20, 20},
new float[] {0, 255, 0, 255, 0, 255}, true);
byte[] bytes = hist.GetData();
hist.SetTo(bytes);
float[] bins = new float[20*20*20];
hist.CopyTo(bins);
}
}
示例14: ProcessFrame
private void ProcessFrame(object sender, EventArgs e)
{
Mat image = new Mat();
_capture.Retrieve(image);
if (_forgroundDetector == null)
{
_forgroundDetector = new BackgroundSubtractorMOG2();
}
_forgroundDetector.Apply(image, _forgroundMask);
//update the motion history
_motionHistory.Update(_forgroundMask);
#region get a copy of the motion mask and enhance its color
double[] minValues, maxValues;
Point[] minLoc, maxLoc;
_motionHistory.Mask.MinMax(out minValues, out maxValues, out minLoc, out maxLoc);
Mat motionMask = new Mat();
using (ScalarArray sa = new ScalarArray(255.0 / maxValues[0]))
CvInvoke.Multiply(_motionHistory.Mask, sa, motionMask, 1, DepthType.Cv8U);
//Image<Gray, Byte> motionMask = _motionHistory.Mask.Mul(255.0 / maxValues[0]);
#endregion
//create the motion image
Mat motionImage = new Mat(motionMask.Size.Height, motionMask.Size.Width, DepthType.Cv8U, 3);
motionImage.SetTo(new MCvScalar(0));
//display the motion pixels in blue (first channel)
//motionImage[0] = motionMask;
CvInvoke.InsertChannel(motionMask, motionImage, 0);
//Threshold to define a motion area, reduce the value to detect smaller motion
double minArea = 100;
//storage.Clear(); //clear the storage
Rectangle[] rects;
using (VectorOfRect boundingRect = new VectorOfRect())
{
_motionHistory.GetMotionComponents(_segMask, boundingRect);
rects = boundingRect.ToArray();
}
//iterate through each of the motion component
foreach (Rectangle comp in rects)
{
int area = comp.Width * comp.Height;
//reject the components that have small area;
if (area < minArea) continue;
// find the angle and motion pixel count of the specific area
double angle, motionPixelCount;
_motionHistory.MotionInfo(_forgroundMask, comp, out angle, out motionPixelCount);
//reject the area that contains too few motion
if (motionPixelCount < area * 0.05) continue;
//Draw each individual motion in red
DrawMotion(motionImage, comp, angle, new Bgr(Color.Red));
}
// find and draw the overall motion angle
double overallAngle, overallMotionPixelCount;
_motionHistory.MotionInfo(_forgroundMask, new Rectangle(Point.Empty, motionMask.Size), out overallAngle, out overallMotionPixelCount);
DrawMotion(motionImage, new Rectangle(Point.Empty, motionMask.Size), overallAngle, new Bgr(Color.Green));
if (this.Disposing || this.IsDisposed)
return;
capturedImageBox.Image = image;
forgroundImageBox.Image = _forgroundMask;
//Display the amount of motions found on the current image
UpdateText(String.Format("Total Motions found: {0}; Motion Pixel count: {1}", rects.Length, overallMotionPixelCount));
//Display the image of the motion
motionImageBox.Image = motionImage;
}
示例15: Compare2Features
public Image Compare2Features(
string destFeatureFile,
string origFeatureFile,
string vpFileDest,
string vpFileOrig,
string destImageFile = "",
string origImageFile = "",
bool needMatchedImage = false)
{
EmguType destFeatures = Utils.ReadJsonFile<EmguType>(destFeatureFile);
EmguType origFeatures = Utils.ReadJsonFile<EmguType>(origFeatureFile);
VectorOfVectorOfDMatch matches = new VectorOfVectorOfDMatch();
BFMatcher matcher = new BFMatcher(DistanceType.L2);
matcher.Add(origFeatures.Descriptors);
matcher.KnnMatch(destFeatures.Descriptors, matches, 2, null);
Mat mask = new Mat(matches.Size, 1, DepthType.Cv8U, 1);
mask.SetTo(new MCvScalar(255));
Features2DToolbox.VoteForUniqueness(matches, 0.8, mask);
Mat homography = null;
int Count = CvInvoke.CountNonZero(mask); //用于寻找模板在图中的位置
if (Count >= 4)
{
Count = Features2DToolbox.VoteForSizeAndOrientation(origFeatures.KeyPoints, destFeatures.KeyPoints, matches, mask, 1.5, 20);
if (Count >= 4)
homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(origFeatures.KeyPoints, destFeatures.KeyPoints, matches, mask, 2);
}
Mat showImage = null;
Mat pointImage = null;
if (needMatchedImage
&& !string.IsNullOrWhiteSpace(destImageFile)
&& !string.IsNullOrWhiteSpace(origImageFile))
{
Image<Gray, Byte> destImage = new Image<Gray, Byte>(destImageFile);
Image<Gray, Byte> origImage = new Image<Gray, Byte>(origImageFile);
showImage = new Mat(origImage.Size, DepthType.Cv8U, 3);
pointImage = new Mat(origImage.Size, DepthType.Cv8U, 3);
//add optical vp line
string vpPath = Path.GetDirectoryName(vpFileDest);
List<FileInfo> files = new List<FileInfo>();
DirectoryInfo dirInfo = new DirectoryInfo(vpPath);
FileInfo[] fsinfo = dirInfo.GetFiles();
FileInfo[] vppFiles = fsinfo.Where(p => p.Name.Contains(".jpgpp.dat")).OrderBy(p => p.Name).ToArray();
//FileInfo[] vpdFiles = fsinfo.Where(p => p.Name.Contains(".jpgpd.dat")).OrderBy(p => p.Name).ToArray();
for (int k = 0; k < vppFiles.Length - 1; k++)
{
VectorOfPointF vpDest = Utils.ReadJsonFile<VectorOfPointF>(vppFiles[k+1].FullName);
//VectorOfPointF vpOrig = Utils.ReadJsonFile<VectorOfPointF>(vpdFiles[k].FullName);
VectorOfPointF vpOrig = Utils.ReadJsonFile<VectorOfPointF>(vppFiles[k].FullName);
//Restart the start point of motion tracking.
if ((k+1) % Constants.DETECTIVE_GROUP_COUNT == 0)
continue;
Point[] pointsDest = Array.ConvertAll<PointF, Point>(vpDest.ToArray(), Point.Round);
Point[] pointsOirg = Array.ConvertAll<PointF, Point>(vpOrig.ToArray(), Point.Round);
for (int i = 0; i < pointsDest.Length; i++)
{
Point[] ps = { pointsDest[i], pointsOirg[i] };
CvInvoke.Polylines(pointImage, ps, true, new MCvScalar(0, 0, 255, 255));
//CvInvoke.Circle(pointImage, pointsOirg[i], 1, new MCvScalar(0, 255, 0, 255));
}
}
Image<Bgr, Byte> firstImg = new Image<Bgr, Byte>(origImageFile);
Image<Bgr, Byte> lastImg = new Image<Bgr, Byte>("D:\\MyPrj\\mygitcode\\MyCode\\ExamVideoProcess\\ExamVideoProcess\\bin\\x64\\Debug\\initVideo\\30Grayimg.jpg");
CvInvoke.AddWeighted(firstImg, 0.5, lastImg, 0.5, 0.0, showImage, DepthType.Cv8U);
CvInvoke.AddWeighted(showImage, 0.5, pointImage, 0.5, 0.0, showImage, DepthType.Cv8U);
/*
Features2DToolbox.DrawMatches(origImage.Convert<Gray, Byte>().Mat, origFeatures.KeyPoints, destImage.Convert<Gray, Byte>().Mat, destFeatures.KeyPoints, matches, showImage, new MCvScalar(255, 0, 255), new MCvScalar(0, 255, 255), mask);
if (homography != null) //如果在图中找到了模板,就把它画出来
{
Rectangle rect = new Rectangle(Point.Empty, origImage.Size);
PointF[] points = new PointF[]
{
new PointF(rect.Left, rect.Bottom),
new PointF(rect.Right, rect.Bottom),
new PointF(rect.Right, rect.Top),
new PointF(rect.Left, rect.Top)
};
points = CvInvoke.PerspectiveTransform(points, homography);
Point[] points2 = Array.ConvertAll<PointF, Point>(points, Point.Round);
VectorOfPoint vp = new VectorOfPoint(points2);
CvInvoke.Polylines(showImage, vp, true, new MCvScalar(255, 0, 0, 255), 15);
}
*/
return showImage.Bitmap;
}
return null;
}