当前位置: 首页>>代码示例>>C#>>正文


C# Mat.Set方法代码示例

本文整理汇总了C#中Mat.Set方法的典型用法代码示例。如果您正苦于以下问题:C# Mat.Set方法的具体用法?C# Mat.Set怎么用?C# Mat.Set使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Mat的用法示例。


在下文中一共展示了Mat.Set方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: usingCppInterface1

        private static void usingCppInterface1()
        {
            // Cv2.ImRead
            using (var src = new Mat(@"..\..\Images\Penguin.Png", LoadMode.AnyDepth | LoadMode.AnyColor))
            using (var dst = new Mat())
            {
                src.CopyTo(dst);

                for (var y = 0; y < src.Height; y++)
                {
                    for (var x = 0; x < src.Width; x++)
                    {
                        var pixel = src.Get<Vec3b>(y, x);
                        var newPixel = new Vec3b
                        {
                            Item0 = (byte)(255 - pixel.Item0), // B
                            Item1 = (byte)(255 - pixel.Item1), // G
                            Item2 = (byte)(255 - pixel.Item2) // R
                        };
                        dst.Set(y, x, newPixel);
                    }
                }

                // [Cpp] Accessing Pixel
                // https://github.com/shimat/opencvsharp/wiki/%5BCpp%5D-Accessing-Pixel

                //Cv2.NamedWindow();
                //Cv2.ImShow();
                using (new Window("C++ Interface: Src", image: src))
                using (new Window("C++ Interface: Dst", image: dst))
                {
                    Cv2.WaitKey(0);
                }
            }
        }
开发者ID:kauser-cse-buet,项目名称:OpenCVSharp-Samples,代码行数:35,代码来源:Program.cs

示例2: Run

        public void Run()
        {

            Console.WriteLine("===== FlannTest =====");

            // creates data set
            using (Mat features = new Mat(10000, 2, MatType.CV_32FC1))
            {
                Random rand = new Random();
                for (int i = 0; i < features.Rows; i++)
                {
                    features.Set<float>(i, 0, rand.Next(10000));
                    features.Set<float>(i, 1, rand.Next(10000));
                }

                // query
                Point2f queryPoint = new Point2f(7777, 7777);
                Mat queries = new Mat(1, 2, MatType.CV_32FC1);
                queries.Set<float>(0, 0, queryPoint.X);
                queries.Set<float>(0, 1, queryPoint.Y);
                Console.WriteLine("query:({0}, {1})", queryPoint.X, queryPoint.Y);
                Console.WriteLine("-----");

                // knnSearch
                using (Index nnIndex = new Index(features, new KDTreeIndexParams(4)))
                {
                    const int Knn = 1;
                    int[] indices;
                    float[] dists;
                    nnIndex.KnnSearch(queries, out indices, out dists, Knn, new SearchParams(32));

                    for (int i = 0; i < Knn; i++)
                    {
                        int index = indices[i];
                        float dist = dists[i];
                        Point2f pt = new Point2f(features.Get<float>(index, 0), features.Get<float>(index, 1));
                        Console.Write("No.{0}\t", i);
                        Console.Write("index:{0}", index);
                        Console.Write(" distance:{0}", dist);
                        Console.Write(" data:({0}, {1})", pt.X, pt.Y);
                        Console.WriteLine();
                    }
                    Knn.ToString();
                }
            }
            Console.Read();
        }
开发者ID:jorik041,项目名称:opencvsharp,代码行数:47,代码来源:FlannSample.cs

示例3: PixelAccess

 private void PixelAccess()
 {
     using (Mat mat = new Mat(128, 128, MatrixType.U8C1))
     {
         for (int y = 0; y < mat.Rows; y++)
         {
             for (int x = 0; x < mat.Cols; x++)
             {
                 mat.Set<byte>(y, x, (byte)(y + x));
             }
         }
         using (new CvWindow("PixelAccess", mat.ToIplImage()))
         {
             Cv.WaitKey();
         }
     }
 }
开发者ID:neoxeo,项目名称:opencvsharp,代码行数:17,代码来源:CppTest.cs

示例4: Texture2DToMat

    // Convert the Texture2D type of Unity to OpenCV's CvMat
    // This uses Adcock's parallel C# code to parallelize the conversion and make it faster
    // I found the code execution dropped from 180 msec per frame to 70 msec per frame with parallelization
    void Texture2DToMat(Texture2D tex, Mat m)
    {
        //float startTime = Time.realtimeSinceStartup;

        Color[] pixels = tex.GetPixels();

        // Parallel for loop
        Parallel.For(0, imHeight, i =>
        {
            for (var j = 0; j < imWidth; j++)
            {

                var pixel = pixels[j + i * imWidth];
                var col = new CvScalar
                {
                    Val0 = (double)pixel.b * 255,
                    Val1 = (double)pixel.g * 255,
                    Val2 = (double)pixel.r * 255
                };

                m.Set(i, j, col);
            }
        });

        //				CvScalar col;
        //				Color pixel;
        //				int i, j;
        //
        //				// Non-parallelized code
        //				for (i = 0; i < imHeight; i++) {
        //						for (j = 0; j < imWidth; j++) {
        //								pixel = pixels [j + i * imWidth];
        //
        //								col = new CvScalar
        //								{
        //									Val0 = (double)pixel.b * 255,
        //									Val1 = (double)pixel.g * 255,
        //									Val2 = (double)pixel.r * 255
        //								};
        //
        //								videoSourceImage.Set2D (i, j, col);
        //						}
        //
        //				}

        // Flip up/down dimension and right/left dimension
        if (!FlipUpDownAxis && FlipLeftRightAxis)
            m.Flip(FlipMode.XY);
        else if (!FlipUpDownAxis)
            m.Flip(FlipMode.X);
        else if (FlipLeftRightAxis)
            m.Flip(FlipMode.Y);

        // Test difference in time between parallel and non-parallel code
        //Debug.Log (Time.realtimeSinceStartup - startTime);
    }
开发者ID:Titoulion,项目名称:Shoal,代码行数:59,代码来源:KinectOpenCvDetector.cs

示例5: CvMainThread

        /// <summary>
        /// Worker thread for image processing.
        /// </summary>
        public void CvMainThread()
        {
            var faceCascade = new CascadeClassifier();
            var eyesCascade = new CascadeClassifier();

            faceCascade.load("haarcascade_frontalface_alt.xml");
            eyesCascade.load("haarcascade_eye_tree_eyeglasses.xml");
            
            var srcFrame = new Mat();
            var dstFrame = new Mat();

            var imgProc = new ImgProc();

            _videoIo.StartCapture();

            while (true)
            {
                _videoIo.GetFrame(srcFrame);

                switch (_processingMethodIndex)
                {
                    // passthrough
                    case 0:
                        break;
                    
                    // gray
                    case 1:
                        imgProc.cvtColor(srcFrame, dstFrame, ColorConversionCodes.COLOR_RGBA2GRAY);
                        imgProc.cvtColor(dstFrame, srcFrame, ColorConversionCodes.COLOR_GRAY2RGB);
                        break;
                    
                    // canny
                    case 3:
                        imgProc.cvtColor(srcFrame, dstFrame, cvRT.ColorConversionCodes.COLOR_RGBA2GRAY);
                        imgProc.GaussianBlur(dstFrame, dstFrame, new cvRT.Size(7, 7), 1.5, 1.5);
                        imgProc.Canny(dstFrame, dstFrame, 0, 30, 3);
                        imgProc.cvtColor(dstFrame, srcFrame, ColorConversionCodes.COLOR_GRAY2RGB);
                        break;

                    // contour
                    case 4:
                    {
                        var contours = new VectorOfVectorOfPoint();
                        var hierarchy = new VectorOfVec4i();
                        var color = new Scalar(255, 255, 255, 255);

                        imgProc.Canny(srcFrame, dstFrame, 100, 100 * 2, 3);
                        imgProc.FindContours(dstFrame, contours, hierarchy, ContourRetrievalAlgorithm.RETR_TREE, ContourApproximationModes.CHAIN_APPROX_SIMPLE, new Point(0, 0));

                        srcFrame.Set(new Scalar(0, 0, 0, 0));

                        for (var i = 0 ; i < contours.Count();  i++)
                        {
                            imgProc.DrawContours(srcFrame, contours, i, color, 2, 8, hierarchy, 0, new Point(0, 0));
                        }
                            
                        break;
                    }

                    // face detect
                    case 5:
                    {
                        imgProc.cvtColor(srcFrame, dstFrame, ColorConversionCodes.COLOR_RGBA2GRAY);
                        imgProc.EqualizeHist(dstFrame, dstFrame);

                        // Faces in the frame.
                        var faces = new List<Rect>();

                        try
                        {
                            faces = new List<Rect>();
                            faceCascade.detectMultiScale(dstFrame, faces, 1.1, 2, (int)(0 | CV_HAAR.SCALE_IMAGE), new cvRT.Size(30, 30));
                        }
                        catch (Exception ex)
                        {
                            Debug.WriteLine("Exception {0}", ex.Message);
                        }

                        // For each face, detect the eyes
                        foreach (var face in faces)
                        {
                            // Draw ellipse for the face.
                            var faceCenter = new Point(face.X + face.Width / 2, face.Y + face.Height / 2);
                            imgProc.Ellipse(srcFrame, faceCenter, new cvRT.Size(face.Width / 2, face.Height / 2), 0, 0, 360, new Scalar(255, 0, 255, 0), 4, 8, 0);

                            // Detect the eyes for the face
                            var faceRoi = dstFrame.RectOfInterest(face);
                            var eyes = new List<Rect>();
                            eyesCascade.detectMultiScale(faceRoi, eyes, 1.1, 2, (int) (0 | CASCADE_FLAG.CASCADE_SCALE_IMAGE),new cvRT.Size(30, 30));
                            
                            // Draw the eyes
                            foreach (var eye in eyes)
                            {
                                var eyeCenter = new Point(face.X + eye.X + eye.Width/2, face.Y + eye.Y + eye.Height/2);
                                var radius = (int) Math.Round((eye.Width + eye.Height) * 0.25);
                                imgProc.Circle(srcFrame, eyeCenter, radius, new Scalar(255, 0, 0, 0), 4, 8, 0);
                            }
//.........这里部分代码省略.........
开发者ID:tpdns90321,项目名称:opencv,代码行数:101,代码来源:MainPage.xaml.cs

示例6: example02

        private static void example02()
        {
            var src = new Mat(@"..\..\Images\fruits.jpg", LoadMode.AnyDepth | LoadMode.AnyColor);
            Cv2.ImShow("Source", src);
            Cv2.WaitKey(1); // do events

            Cv2.Blur(src, src, new Size(15, 15));
            Cv2.ImShow("Blurred Image", src);
            Cv2.WaitKey(1); // do events

            // Converts the MxNx3 image into a Kx3 matrix where K=MxN and
            // each row is now a vector in the 3-D space of RGB.
            // change to a Mx3 column vector (M is number of pixels in image)
            var columnVector = src.Reshape(cn: 3, rows: src.Rows * src.Cols);

            // convert to floating point, it is a requirement of the k-means method of OpenCV.
            var samples = new Mat();
            columnVector.ConvertTo(samples, MatType.CV_32FC3);

            for (var clustersCount = 2; clustersCount <= 8; clustersCount += 2)
            {
                var bestLabels = new Mat();
                var centers = new Mat();
                Cv2.Kmeans(
                    data: samples,
                    k: clustersCount,
                    bestLabels: bestLabels,
                    criteria:
                        new TermCriteria(type: CriteriaType.Epsilon | CriteriaType.Iteration, maxCount: 10, epsilon: 1.0),
                    attempts: 3,
                    flags: KMeansFlag.PpCenters,
                    centers: centers);

                var clusteredImage = new Mat(src.Rows, src.Cols, src.Type());
                for (var size = 0; size < src.Cols * src.Rows; size++)
                {
                    var clusterIndex = bestLabels.At<int>(0, size);
                    var newPixel = new Vec3b
                    {
                        Item0 = (byte)(centers.At<float>(clusterIndex, 0)), // B
                        Item1 = (byte)(centers.At<float>(clusterIndex, 1)), // G
                        Item2 = (byte)(centers.At<float>(clusterIndex, 2)) // R
                    };
                    clusteredImage.Set(size / src.Cols, size % src.Cols, newPixel);
                }

                Cv2.ImShow(string.Format("Clustered Image [k:{0}]", clustersCount), clusteredImage);
                Cv2.WaitKey(1); // do events
            }

            Cv2.WaitKey();
            Cv2.DestroyAllWindows();
        }
开发者ID:kauser-cse-buet,项目名称:OpenCVSharp-Samples,代码行数:53,代码来源:Program.cs

示例7: watershedExample


//.........这里部分代码省略.........
                var key = Cv2.WaitKey(0);

                if ((char)key == 27) // ESC
                {
                    break;
                }

                if ((char)key == 'r') // Reset
                {
                    markerMask = new Mat(markerMask.Size(), markerMask.Type(), s: Scalar.All(0));
                    src.CopyTo(srcCopy);
                    sourceWindow.Image = srcCopy;
                }

                if ((char)key == 'w' || (char)key == ' ') // Apply watershed
                {
                    Point[][] contours; //vector<vector<Point>> contours;
                    HiearchyIndex[] hierarchyIndexes; //vector<Vec4i> hierarchy;
                    Cv2.FindContours(
                        markerMask,
                        out contours,
                        out hierarchyIndexes,
                        mode: ContourRetrieval.CComp,
                        method: ContourChain.ApproxSimple);

                    if (contours.Length == 0)
                    {
                        continue;
                    }

                    var markers = new Mat(markerMask.Size(), MatType.CV_32S, s: Scalar.All(0));

                    var componentCount = 0;
                    var contourIndex = 0;
                    while ((contourIndex >= 0))
                    {
                        Cv2.DrawContours(
                            markers,
                            contours,
                            contourIndex,
                            color: Scalar.All(componentCount+1),
                            thickness: -1,
                            lineType: LineType.Link8,
                            hierarchy: hierarchyIndexes,
                            maxLevel: int.MaxValue);

                        componentCount++;
                        contourIndex = hierarchyIndexes[contourIndex].Next;
                    }

                    if (componentCount == 0)
                    {
                        continue;
                    }

                    var colorTable = new List<Vec3b>();
                    for (var i = 0; i < componentCount; i++)
                    {
                        var b = rnd.Next(0, 255); //Cv2.TheRNG().Uniform(0, 255);
                        var g = rnd.Next(0, 255); //Cv2.TheRNG().Uniform(0, 255);
                        var r = rnd.Next(0, 255); //Cv2.TheRNG().Uniform(0, 255);

                        colorTable.Add(new Vec3b((byte)b, (byte)g, (byte)r));
                    }

                    Cv2.Watershed(src, markers);

                    var watershedImage = new Mat(markers.Size(), MatType.CV_8UC3);

                    // paint the watershed image
                    for (var i = 0; i < markers.Rows; i++)
                    {
                        for (var j = 0; j < markers.Cols; j++)
                        {
                            var idx = markers.At<int>(i, j);
                            if (idx == -1)
                            {
                                watershedImage.Set(i, j, new Vec3b(255, 255, 255));
                            }
                            else if (idx <= 0 || idx > componentCount)
                            {
                                watershedImage.Set(i, j, new Vec3b(0, 0, 0));
                            }
                            else
                            {
                                watershedImage.Set(i, j, colorTable[idx - 1]);
                            }
                        }
                    }

                    watershedImage = watershedImage * 0.5 + imgGray * 0.5;
                    Cv2.ImShow("Watershed Transform", watershedImage);
                    Cv2.WaitKey(1); //do events
                }
            }

            sourceWindow.Dispose();
            Cv2.DestroyAllWindows();
            src.Dispose();
        }
开发者ID:kauser-cse-buet,项目名称:OpenCVSharp-Samples,代码行数:101,代码来源:Program.cs

示例8: Run

        /// <summary>
        /// Classical Multidimensional Scaling
        /// </summary>
        public void Run()
        {
            // creates distance matrix
            int size = CityDistance.GetLength(0);
            Mat t = new Mat(size, size, MatType.CV_64FC1, CityDistance);
            // adds Torgerson's additive constant to t
            double torgarson = Torgerson(t);
            t += torgarson;
            // squares all elements of t
            t = t.Mul(t);

            // centering matrix G
            Mat g = CenteringMatrix(size);
            // calculates inner product matrix B
            Mat b = g * t * g.T() * -0.5;
            // calculates eigenvalues and eigenvectors of B
            Mat values = new Mat();
            Mat vectors = new Mat();
            Cv2.Eigen(b, values, vectors);
            for (int r = 0; r < values.Rows; r++)
            {
                if (values.Get<double>(r) < 0)
                    values.Set<double>(r, 0);
            }

            //Console.WriteLine(values.Dump());

            // multiplies sqrt(eigenvalue) by eigenvector
            Mat result = vectors.RowRange(0, 2);
            {
                var at = result.GetGenericIndexer<double>();
                for (int r = 0; r < result.Rows; r++)
                {
                    for (int c = 0; c < result.Cols; c++)
                    {
                        at[r, c] *= Math.Sqrt(values.Get<double>(r));
                    }
                }
            }

            // scaling
            Cv2.Normalize(result, result, 0, 800, NormType.MinMax);

            // opens a window
            using (Mat img = Mat.Zeros(600, 800, MatType.CV_8UC3))
            using (Window window = new Window("City Location Estimation"))
            {
                var at = result.GetGenericIndexer<double>();
                for (int c = 0; c < size; c++)
                {
                    double x = at[0, c];
                    double y = at[1, c];
                    x = x * 0.7 + img.Width * 0.1;
                    y = y * 0.7 + img.Height * 0.1;
                    img.Circle((int)x, (int)y, 5, CvColor.Red, -1);
                    Point textPos = new Point(x + 5, y + 10);
                    img.PutText(CityNames[c], textPos, FontFace.HersheySimplex, 0.5, CvColor.White);
                }
                window.Image = img;
                Cv2.WaitKey();
            }
        }
开发者ID:0sv,项目名称:opencvsharp,代码行数:65,代码来源:MDS.cs

示例9: Update

    // Update is called once per frame
    void Update()
    {
        if (runCalibration)
        {
            if (Input.GetMouseButton(0) || Input.GetMouseButton(1) || Input.GetMouseButton(2))
            {
                if (Input.GetMouseButton(0))
                {
                    //Debug.Log(Input.mousePosition);
                    GameObject bc = GameObject.FindGameObjectWithTag("BlueCross");
                    bc.transform.localPosition = new Vector3(Map(Input.mousePosition.x, Screen.width / 2.0f - 320.0f, Screen.width / 2.0f + 320.0f, 0.0f, 640.0f) - 320.0f, -Map(Input.mousePosition.y, Screen.height / 2.0f + 240.0f, Screen.height / 2.0f - 240.0f, 0.0f, 480.0f) + 240.0f, 0.0f);
                }
                else if (Input.GetMouseButton(1))
                {
                    GameObject yc = GameObject.FindGameObjectWithTag("YellowCross");
                    yc.transform.localPosition = new Vector3(Map(Input.mousePosition.x, Screen.width / 2.0f - 320.0f, Screen.width / 2.0f + 320.0f, 0.0f, 640.0f) - 320.0f, -Map(Input.mousePosition.y, Screen.height / 2.0f + 240.0f, Screen.height / 2.0f - 240.0f, 0.0f, 480.0f) + 240.0f, 0.0f);
                    nextBt = true;
                }
                else if (Input.GetMouseButton(2) && nextBt == true)
                {
                    if (addKinectPoint())
                    {
                        addProjectorPoint();
                        Debug.Log("Point Added! -> (" + kinectCoordinates.Count + ") ");
                        nextBt = false;
                    }
                    else
                    {
                        Debug.Log("Kinect Point out of bounds!");
                    }
                }
            }
            if (Input.GetKeyDown(KeyCode.A))
            {
                //PointerEventData pointer = new PointerEventData(EventSystem.current);
                //pointer.position = Input.mousePosition;
                //List<RaycastResult> raycastResults = new List<RaycastResult>();
                //EventSystem.current.RaycastAll(pointer, raycastResults);
                if (addKinectPoint())
                {
                    addProjectorPoint();
                    Debug.Log("Point Added! -> " + kinectCoordinates.Count);
                }
                else
                {
                    Debug.Log("Kinect Point out of bounds!");
                }
            }
            if (Input.GetKeyDown(KeyCode.S))
            {
                if (kinectCoordinates.Count >= 8)
                {
                    Debug.Log("Starting Calibration...");
                    findTransformation(kinectCoordinates, projectorCoordinates);
                    foundResult = true;
                }
                else
                {
                    Debug.Log("Not Enough Points!");
                }
            }
            if (Input.GetKeyDown(KeyCode.D) && foundResult == true)
            {
                showResult = !showResult;
                if (!showResult)
                {
                    screenTx.SetPixels32(resetPixels);
                    screenTx.Apply(false);
                }
                Debug.Log("Show result toggle: " + showResult);
            }
            if (Input.GetKeyDown(KeyCode.F) && foundResult == true)
            {

                using (CvFileStorage fs = new CvFileStorage("KinectCalibration.xml", null, FileStorageMode.Write))
                {
                    string nodeName = "calibResult";
                    fs.Write(nodeName, result.ToCvMat());
                    nodeName = "kinectPoints";
                    Mat kinectPts = new Mat(1, kinectCoordinates.Count, MatType.CV_64FC3);
                    for (int i = 0; i < kinectCoordinates.Count; i++)
                    {
                        kinectPts.Set<CvPoint3D64f>(0, i, (CvPoint3D64f)kinectCoordinates[i]);
                    }
                    fs.Write(nodeName, kinectPts.ToCvMat());
                    nodeName = "projectorPoints";
                    Mat projPts = new Mat(1, projectorCoordinates.Count, MatType.CV_64FC2);
                    for (int i = 0; i < projectorCoordinates.Count; i++)
                    {
                        projPts.Set<CvPoint2D64f>(0, i, (CvPoint2D64f)projectorCoordinates[i]);
                    }
                    fs.Write(nodeName, projPts.ToCvMat());
                    fs.Dispose();
                }
                Debug.Log("Calib Data saved!");
            }
            if (Input.GetKeyDown(KeyCode.Q))
            {
                delLastPoints();
//.........这里部分代码省略.........
开发者ID:Titoulion,项目名称:Shoal,代码行数:101,代码来源:KinectProjectorCalibrator.cs

示例10: prepareMatrices

    private void prepareMatrices(ArrayList kinectCoors, ArrayList projectorCoors)
    {
        foundCoordinatesMatrix = new Mat(projectorCoors.Count * 2, 11, OpenCvSharp.CPlusPlus.MatType.CV_64FC1);
        rightSideMatrix = new Mat(projectorCoors.Count * 2, 1, OpenCvSharp.CPlusPlus.MatType.CV_64FC1);
        for (int i = 0; i < projectorCoors.Count * 2; i = i + 2)
        {
            OpenCvSharp.CvPoint3D64f kc = (OpenCvSharp.CvPoint3D64f)kinectCoors[i / 2];
            OpenCvSharp.CvPoint2D64f projC = (OpenCvSharp.CvPoint2D64f)projectorCoors[i / 2];
            foundCoordinatesMatrix.Set(i, 0, kc.X);
            foundCoordinatesMatrix.Set(i, 1, kc.Y);
            foundCoordinatesMatrix.Set(i, 2, kc.Z);
            foundCoordinatesMatrix.Set(i, 3, 1);
            foundCoordinatesMatrix.Set(i, 4, 0);
            foundCoordinatesMatrix.Set(i, 5, 0);
            foundCoordinatesMatrix.Set(i, 6, 0);
            foundCoordinatesMatrix.Set(i, 7, 0);
            foundCoordinatesMatrix.Set(i, 8, -projC.X * kc.X);
            foundCoordinatesMatrix.Set(i, 9, -projC.X * kc.Y);
            foundCoordinatesMatrix.Set(i, 10, -projC.X * kc.Z);
            rightSideMatrix.Set(i, 0, projC.X);

            foundCoordinatesMatrix.Set(i + 1, 0, 0);
            foundCoordinatesMatrix.Set(i + 1, 1, 0);
            foundCoordinatesMatrix.Set(i + 1, 2, 0);
            foundCoordinatesMatrix.Set(i + 1, 3, 0);
            foundCoordinatesMatrix.Set(i + 1, 4, kc.X);
            foundCoordinatesMatrix.Set(i + 1, 5, kc.Y);
            foundCoordinatesMatrix.Set(i + 1, 6, kc.Z);
            foundCoordinatesMatrix.Set(i + 1, 7, 1);
            foundCoordinatesMatrix.Set(i + 1, 8, -projC.Y * kc.X);
            foundCoordinatesMatrix.Set(i + 1, 9, -projC.Y * kc.Y);
            foundCoordinatesMatrix.Set(i + 1, 10, -projC.Y * kc.Z);
            rightSideMatrix.Set(i + 1, 0, projC.Y);
        }
    }
开发者ID:Titoulion,项目名称:Shoal,代码行数:35,代码来源:KinectProjectorCalibrator.cs

示例11: OtherOperation

        public static bool OtherOperation(System.Drawing.Rectangle frogRect)
        {
            if (false)
            {
                var mat = Cv2.GetRotationMatrix2D(new Point2f(10, 10), 45, 1);
                Console.WriteLine(mat);
                //Console.WriteLine(mat.Dims);
                Console.WriteLine(mat.Size());
                var p = new Mat(3, 1, MatType.CV_64FC1);
                p.Set<double>(0, 0, 0);
                p.Set<double>(1, 0, 0);
                p.Set<double>(2, 0, 1);
                Console.WriteLine(p);
                //var q = mat.Cross(p);
                var q = (mat * p).ToMat();
                Console.WriteLine(q);
                Console.WriteLine(q.Get<double>(0, 0));
                Console.WriteLine(q.Get<double>(1, 0));
                return true;
            }
            if (false)
            {
                var dir = "Example2/";

                var src = new Mat("0.bmp");
                var frog = src.Cut(new Rect(frogRect.X, frogRect.Y, frogRect.Width, frogRect.Height));
                frog.ImWrite(dir + "/frog.bmp");


                var frog_hsv_channels = frog.CvtColor(ColorConversion.RgbToHsv).Split();
                for (var i = 0; i < 3; ++i)
                    frog_hsv_channels[i].ImWrite(dir + string.Format("frog {0}.png", hsv_names[i]));

                frog_hsv_channels[1].Threshold(210, 255, ThresholdType.Binary).ImWrite(dir + "frog s th.png");
                return true;
            }
            if (false)
            {
                MakeImagesForArticle();

                return true;
            }
            if (false)
            {
                DetectBallsForArticle();
                return true;
            }
            if (false)
            {
                var images = Enumerable.Range(0, 3).Select(i => string.Format("{0}.bmp", i)).Select(name => LoadBitmap(name).ToImage()).ToArray();
                //var zeroImage = new int[images[0].GetLength(0), images[0].GetLength(1)];

                var diff0_1 = images[0].Diff(images[1], 0, 0, 10);
                var diff1_2 = images[1].Diff(images[2], 0, 0, 10);
                diff0_1.ToBitmap().Save("diff s 0 1.bmp");
                diff1_2.ToBitmap().Save("diff s 1 2.bmp");
                diff0_1.And(diff1_2).ToBitmap().Save("diff s.bmp");

                foreach (var t in new[] { 0, 10, 20, 50, 100 })
                {
                    for (var dy = 0; dy < 10; ++dy)
                    {
                        images[1].Diff(images[0], 0, dy, t).ToBitmap().Save(string.Format("diff 0 {0} {1}.bmp", dy, t));
                    }
                }
                //foreach (var t in new[] { 0, 10, 20, 50, 100, 150 })
                //{
                //  images[1].Diff(zeroImage, 0, 0, t).ToBitmap().Save(string.Format("diff-z {0}.bmp", t));
                //}
                return true;
            }
            return false;
        }
开发者ID:DrReiz,项目名称:DrReiz.Robo-Gamer,代码行数:73,代码来源:Zuma.cs


注:本文中的Mat.Set方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。