本文整理汇总了C#中Mat.Size方法的典型用法代码示例。如果您正苦于以下问题:C# Mat.Size方法的具体用法?C# Mat.Size怎么用?C# Mat.Size使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Mat
的用法示例。
在下文中一共展示了Mat.Size方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: Run
public void Run()
{
var src = new Mat(FilePath.Lenna, LoadMode.Color);
var gray = new Mat(FilePath.Lenna, LoadMode.GrayScale);
var dst = new Mat(src.Size(), MatType.CV_8UC3, Scalar.All(0));
StarDetector detector = new StarDetector(45);
KeyPoint[] keypoints = detector.Run(gray);
if (keypoints != null)
{
var color = new Scalar(0, 255, 0);
foreach (KeyPoint kpt in keypoints)
{
float r = kpt.Size / 2;
Cv2.Circle(dst, kpt.Pt, (int)r, color, 1, LineType.Link8, 0);
Cv2.Line(dst,
new Point2f(kpt.Pt.X + r, kpt.Pt.Y + r),
new Point2f(kpt.Pt.X - r, kpt.Pt.Y - r),
color, 1, LineType.Link8, 0);
Cv2.Line(dst,
new Point2f(kpt.Pt.X - r, kpt.Pt.Y + r),
new Point2f(kpt.Pt.X + r, kpt.Pt.Y - r),
color, 1, LineType.Link8, 0);
}
}
using (new Window("img", src))
using (new Window("StarDetector features", dst))
{
Cv.WaitKey();
}
}
示例2: Niblack
/// <summary>
/// Niblackの手法による二値化処理を行う。
/// </summary>
/// <param name="imgSrc">入力画像</param>
/// <param name="imgDst">出力画像</param>
/// <param name="kernelSize">局所領域のサイズ</param>
/// <param name="k">係数</param>
#else
/// <summary>
/// Binarizes by Niblack's method
/// </summary>
/// <param name="src">Input image</param>
/// <param name="dst">Output image</param>
/// <param name="kernelSize">Window size</param>
/// <param name="k">Adequate coefficient</param>
#endif
public static void Niblack(Mat src, Mat dst, int kernelSize, double k)
{
if (src == null)
throw new ArgumentNullException("src");
if (dst == null)
throw new ArgumentNullException("dst");
// グレースケールのみ
if (src.Type() != MatType.CV_8UC1)
throw new ArgumentException("src must be gray scale image");
if (dst.Type() != MatType.CV_8UC1)
throw new ArgumentException("dst must be gray scale image");
// サイズのチェック
if (kernelSize < 3)
throw new ArgumentOutOfRangeException("kernelSize", "size must be 3 and above");
if (kernelSize % 2 == 0)
throw new ArgumentOutOfRangeException("kernelSize", "size must be odd number");
int width = src.Width;
int height = src.Height;
dst.Create(src.Size(), src.Type());
using (var tSrcMat = new MatOfByte(src))
using (var tDstMat = new MatOfByte(dst))
{
var tSrc = tSrcMat.GetIndexer();
var tDst = tDstMat.GetIndexer();
//for (int y = 0; y < gray.Height; y++)
MyParallel.For(0, height, delegate(int y)
{
for (int x = 0; x < width; x++)
{
double m, s;
MeanStddev(src, x, y, kernelSize, out m, out s);
double threshold = m + k * s;
if (tSrc[y, x] < threshold)
tDst[y, x] = 0;
else
tDst[y, x] = 255;
}
}
);
}
}
示例3: Run
public void Run()
{
using (Mat src = new Mat(FilePath.Distortion, LoadMode.Color))
using (Mat gray = new Mat(src.Size(), MatType.CV_8UC1))
using (Mat dst = src.Clone())
{
Cv2.CvtColor(src, gray, ColorConversion.BgrToGray);
CppStyleMSER(gray, dst); // C++ style
using (new Window("MSER src", src))
using (new Window("MSER gray", gray))
using (new Window("MSER dst", dst))
{
Cv.WaitKey();
}
}
}
示例4: DetectFace
public ActionResult DetectFace(HttpPostedFileBase imageData)
{
try
{
if (imageData == null) { throw new ArgumentException("File is not exist."); }
using (var img = Mat.FromStream(imageData.InputStream, LoadMode.Color))
{
var ExecutingAssemblyPath = new Uri(Path.GetDirectoryName(System.Reflection.Assembly.GetExecutingAssembly().CodeBase.ToString())).LocalPath;
double scale = 2.0;
using (var gray = new Mat())
using (var smallImg = new Mat((int)(img.Rows / scale), (int)(img.Cols / scale), MatType.CV_8UC1))
{
Cv2.CvtColor(img, gray, ColorConversion.BgrToGray);
Cv2.Resize(gray, smallImg, smallImg.Size(), 0, 0, Interpolation.Linear);
Cv2.EqualizeHist(smallImg, smallImg);
byte[] imgBytes = img.ToBytes(".png");
string base64Img = Convert.ToBase64String(imgBytes);
ViewBag.Base64Img = base64Img;
var obj = new CascadeClassifier();
var cascadeFilePath = Path.Combine(ExecutingAssemblyPath, "Content\\haarcascade_frontalface_alt.xml");
if (!obj.Load(cascadeFilePath)) { throw new InvalidOperationException("Failed to load classifier file."); }
var rects = obj.DetectMultiScale(smallImg);
var nestedObj = new CascadeClassifier();
var nestedCascadeFilePath = Path.Combine(ExecutingAssemblyPath, "Content\\haarcascade_eye.xml");
//var nestedCascadeFilePath = Path.Combine(ExecutingAssemblyPath, "Content\\haarcascade_eye_tree_eyeglasses.xml");
if (!nestedObj.Load(nestedCascadeFilePath)) { throw new InvalidOperationException("Failed to load classifier file."); }
foreach(var rect in rects)
{
Point faceCenter;
faceCenter.X = (int)((rect.X + rect.Width * 0.5) * scale);
faceCenter.Y = (int)((rect.Y + rect.Height * 0.5) * scale);
int faceRadius = (int)((rect.Width + rect.Height) * 0.25 * scale);
Cv2.Circle(img, faceCenter, faceRadius, new Scalar(80, 80, 255), 3, LineType.Link8, 0);
Mat smallImgROI = new Mat(smallImg, rect);
var nestedRects = nestedObj.DetectMultiScale(smallImgROI);
foreach(var nestedRect in nestedRects)
{
Point center;
center.X = (int)((rect.X + nestedRect.X + nestedRect.Width * 0.5) * scale);
center.Y = (int)((rect.Y + nestedRect.Y + nestedRect.Height * 0.5) * scale);
int radius = (int)((nestedRect.Width + nestedRect.Height) * 0.25 * scale);
Cv2.Circle(img, center, radius, new Scalar(80, 255, 80), 3, LineType.Link8, 0);
}
}
byte[] resultBytes = img.ToBytes(".png");
string base64Result = Convert.ToBase64String(resultBytes);
ViewBag.Base64OrgResult = base64Result;
byte[] grayBytes = gray.ToBytes(".png");
string base64Gray = Convert.ToBase64String(grayBytes);
ViewBag.Base64Gray = base64Gray;
byte[] smallBytes = smallImg.ToBytes(".png");
string base64Small = Convert.ToBase64String(smallBytes);
ViewBag.Base64Small = base64Small;
}
}
}
catch (Exception ex)
{
Console.WriteLine(ex.ToString());
}
return View();
}
示例5: Dft
public static void Dft(string path)
{
Mat img = Cv2.ImRead(path, LoadMode.GrayScale);
// expand input image to optimal size
Mat padded = new Mat();
int m = Cv2.GetOptimalDFTSize(img.Rows);
int n = Cv2.GetOptimalDFTSize(img.Cols); // on the border add zero values
Cv2.CopyMakeBorder(img, padded, 0, m - img.Rows, 0, n - img.Cols, BorderType.Constant, Scalar.All(0));
// Add to the expanded another plane with zeros
Mat paddedF32 = new Mat();
padded.ConvertTo(paddedF32, MatType.CV_32F);
Mat[] planes = { paddedF32, Mat.Zeros(padded.Size(), MatType.CV_32F) };
Mat complex = new Mat();
Cv2.Merge(planes, complex);
// this way the result may fit in the source matrix
Mat dft = new Mat();
Cv2.Dft(complex, dft);
// compute the magnitude and switch to logarithmic scale
// => log(1 + sqrt(Re(DFT(I))^2 + Im(DFT(I))^2))
Mat[] dftPlanes;
Cv2.Split(dft, out dftPlanes); // planes[0] = Re(DFT(I), planes[1] = Im(DFT(I))
// planes[0] = magnitude
Mat magnitude = new Mat();
Cv2.Magnitude(dftPlanes[0], dftPlanes[1], magnitude);
magnitude += Scalar.All(1); // switch to logarithmic scale
Cv2.Log(magnitude, magnitude);
// crop the spectrum, if it has an odd number of rows or columns
Mat spectrum = magnitude[
new Rect(0, 0, magnitude.Cols & -2, magnitude.Rows & -2)];
// rearrange the quadrants of Fourier image so that the origin is at the image center
int cx = spectrum.Cols / 2;
int cy = spectrum.Rows / 2;
Mat q0 = new Mat(spectrum, new Rect(0, 0, cx, cy)); // Top-Left - Create a ROI per quadrant
Mat q1 = new Mat(spectrum, new Rect(cx, 0, cx, cy)); // Top-Right
Mat q2 = new Mat(spectrum, new Rect(0, cy, cx, cy)); // Bottom-Left
Mat q3 = new Mat(spectrum, new Rect(cx, cy, cx, cy)); // Bottom-Right
// swap quadrants (Top-Left with Bottom-Right)
Mat tmp = new Mat();
q0.CopyTo(tmp);
q3.CopyTo(q0);
tmp.CopyTo(q3);
// swap quadrant (Top-Right with Bottom-Left)
q1.CopyTo(tmp);
q2.CopyTo(q1);
tmp.CopyTo(q2);
// Transform the matrix with float values into a
Cv2.Normalize(spectrum, spectrum, 0, 1, NormType.MinMax);
// Show the result
Cv2.ImShow("Spectrum Magnitude", spectrum);
Cv2.WaitKey(0);
Cv2.DestroyAllWindows();
}
示例6: NiblackFast
/// <summary>
/// Niblackの手法による二値化処理を行う(高速だが、メモリを多く消費するバージョン)。
/// </summary>
/// <param name="imgSrc">入力画像</param>
/// <param name="imgDst">出力画像</param>
/// <param name="kernelSize">局所領域のサイズ</param>
/// <param name="k">係数</param>
#else
/// <summary>
/// Binarizes by Niblack's method (This is faster but memory-hogging)
/// </summary>
/// <param name="src">Input image</param>
/// <param name="dst">Output image</param>
/// <param name="kernelSize">Window size</param>
/// <param name="k">Adequate coefficient</param>
#endif
public static void NiblackFast(Mat src, Mat dst, int kernelSize, double k)
{
if (src == null)
throw new ArgumentNullException("src");
if (dst == null)
throw new ArgumentNullException("dst");
// グレースケールのみ
if (src.Type() != MatType.CV_8UC1)
throw new ArgumentException("src must be gray scale image");
if (dst.Type() != MatType.CV_8UC1)
throw new ArgumentException("dst must be gray scale image");
// サイズのチェック
if (kernelSize < 3)
throw new ArgumentOutOfRangeException("kernelSize", "size must be 3 and above");
if (kernelSize % 2 == 0)
throw new ArgumentOutOfRangeException("kernelSize", "size must be odd number");
int borderSize = kernelSize / 2;
int width = src.Width;
int height = src.Height;
dst.Create(src.Size(), src.Type());
using (var tempMat = new Mat(height + (borderSize * 2), width + (borderSize * 2), src.Type()))
using (var sumMat = new Mat(tempMat.Height + 1, tempMat.Width + 1, MatType.CV_64FC1, 1))
using (var sqSumMat = new Mat(tempMat.Height + 1, tempMat.Width + 1, MatType.CV_64FC1, 1))
{
Cv2.CopyMakeBorder(src, tempMat, borderSize, borderSize, borderSize, borderSize, BorderTypes.Replicate, Scalar.All(0));
Cv2.Integral(tempMat, sumMat, sqSumMat);
using (var tSrcMat = new MatOfByte(src))
using (var tDstMat = new MatOfByte(dst))
using (var tSumMat = new MatOfDouble(sumMat))
using (var tSqSumMat = new MatOfDouble(sqSumMat))
{
var tSrc = tSrcMat.GetIndexer();
var tDst = tDstMat.GetIndexer();
var tSum = tSumMat.GetIndexer();
var tSqSum = tSqSumMat.GetIndexer();
int ylim = height + borderSize;
int xlim = width + borderSize;
int kernelPixels = kernelSize * kernelSize;
for (int y = borderSize; y < ylim; y++)
{
for (int x = borderSize; x < xlim; x++)
{
int x1 = x - borderSize;
int y1 = y - borderSize;
int x2 = x + borderSize + 1;
int y2 = y + borderSize + 1;
double sum = tSum[y2, x2] - tSum[y2, x1] - tSum[y1, x2] + tSum[y1, x1];
double sqsum = tSqSum[y2, x2] - tSqSum[y2, x1] - tSqSum[y1, x2] + tSqSum[y1, x1];
double mean = sum / kernelPixels;
double var = (sqsum / kernelPixels) - (mean * mean);
if (var < 0.0) var = 0.0;
double stddev = Math.Sqrt(var);
double threshold = mean + k * stddev;
if (tSrc[y - borderSize, x - borderSize] < threshold)
tDst[y - borderSize, x - borderSize] = 0;
else
tDst[y - borderSize, x - borderSize] = 255;
}
}
}
}
}
示例7: Bernsen
/// <summary>
/// Bernsenの手法による二値化処理を行う。
/// </summary>
/// <param name="imgSrc">入力画像</param>
/// <param name="imgDst">出力画像</param>
/// <param name="kernelSize">局所領域のサイズ</param>
/// <param name="constrastMin">この数値以下のコントラストの領域は背景領域とみなす</param>
/// <param name="bgThreshold">背景領域と見なされた領域に適用する閾値(背景領域以外では、適応的に閾値を求める)</param>
#else
/// <summary>
/// Binarizes by Bernsen's method
/// </summary>
/// <param name="src">Input image</param>
/// <param name="dst">Output image</param>
/// <param name="kernelSize">Window size</param>
/// <param name="constrastMin">Adequate coefficient</param>
/// <param name="bgThreshold">Adequate coefficient</param>
#endif
public static void Bernsen(Mat src, Mat dst, int kernelSize, byte constrastMin, byte bgThreshold)
{
if (src == null)
throw new ArgumentNullException("src");
if (dst == null)
throw new ArgumentNullException("dst");
// グレースケールのみ
if (src.Type() != MatType.CV_8UC1)
throw new ArgumentException("src must be gray scale image");
if (dst.Type() != MatType.CV_8UC1)
throw new ArgumentException("dst must be gray scale image");
// サイズのチェック
if (kernelSize < 3)
throw new ArgumentOutOfRangeException("kernelSize", "size must be 3 and above");
if (kernelSize % 2 == 0)
throw new ArgumentOutOfRangeException("kernelSize", "size must be odd number");
int width = src.Width;
int height = src.Height;
dst.Create(src.Size(), src.Type());
using (var tSrcMat = new MatOfByte(src))
using (var tDstMat = new MatOfByte(dst))
{
var tSrc = tSrcMat.GetIndexer();
var tDst = tDstMat.GetIndexer();
for (int y = 0; y < height; y++)
{
for (int x = 0; x < width; x++)
{
byte min, max;
MinMax(src, x, y, kernelSize, out min, out max);
int contrast = max - min;
byte threshold;
if (contrast < constrastMin)
threshold = bgThreshold;
else
threshold = (byte)((max + min) / 2);
if (tSrc[y, x] <= threshold)
tDst[y, x] = 0;
else
tDst[y, x] = 255;
}
}
}
}
示例8: watershedExample
/// <summary>
/// https://github.com/Itseez/opencv_extra/blob/master/learning_opencv_v2/ch9_watershed.cpp
/// </summary>
private static void watershedExample()
{
var src = new Mat(@"..\..\Images\corridor.jpg", LoadMode.AnyDepth | LoadMode.AnyColor);
var srcCopy = new Mat();
src.CopyTo(srcCopy);
var markerMask = new Mat();
Cv2.CvtColor(srcCopy, markerMask, ColorConversion.BgrToGray);
var imgGray = new Mat();
Cv2.CvtColor(markerMask, imgGray, ColorConversion.GrayToBgr);
markerMask = new Mat(markerMask.Size(), markerMask.Type(), s: Scalar.All(0));
var sourceWindow = new Window("Source (Select areas by mouse and then press space)")
{
Image = srcCopy
};
var previousPoint = new Point(-1, -1);
sourceWindow.OnMouseCallback += (@event, x, y, flags) =>
{
if (x < 0 || x >= srcCopy.Cols || y < 0 || y >= srcCopy.Rows)
{
return;
}
if (@event == MouseEvent.LButtonUp || !flags.HasFlag(MouseEvent.FlagLButton))
{
previousPoint = new Point(-1, -1);
}
else if (@event == MouseEvent.LButtonDown)
{
previousPoint = new Point(x, y);
}
else if (@event == MouseEvent.MouseMove && flags.HasFlag(MouseEvent.FlagLButton))
{
var pt = new Point(x, y);
if (previousPoint.X < 0)
{
previousPoint = pt;
}
Cv2.Line(img: markerMask, pt1: previousPoint, pt2: pt, color: Scalar.All(255), thickness: 5);
Cv2.Line(img: srcCopy, pt1: previousPoint, pt2: pt, color: Scalar.All(255), thickness: 5);
previousPoint = pt;
sourceWindow.Image = srcCopy;
}
};
var rnd = new Random();
for (; ; )
{
var key = Cv2.WaitKey(0);
if ((char)key == 27) // ESC
{
break;
}
if ((char)key == 'r') // Reset
{
markerMask = new Mat(markerMask.Size(), markerMask.Type(), s: Scalar.All(0));
src.CopyTo(srcCopy);
sourceWindow.Image = srcCopy;
}
if ((char)key == 'w' || (char)key == ' ') // Apply watershed
{
Point[][] contours; //vector<vector<Point>> contours;
HiearchyIndex[] hierarchyIndexes; //vector<Vec4i> hierarchy;
Cv2.FindContours(
markerMask,
out contours,
out hierarchyIndexes,
mode: ContourRetrieval.CComp,
method: ContourChain.ApproxSimple);
if (contours.Length == 0)
{
continue;
}
var markers = new Mat(markerMask.Size(), MatType.CV_32S, s: Scalar.All(0));
var componentCount = 0;
var contourIndex = 0;
while ((contourIndex >= 0))
{
Cv2.DrawContours(
markers,
contours,
contourIndex,
color: Scalar.All(componentCount+1),
thickness: -1,
lineType: LineType.Link8,
hierarchy: hierarchyIndexes,
//.........这里部分代码省略.........
示例9: rotateImage
private static void rotateImage(Mat src, Mat dst, double angle, double scale)
{
var imageCenter = new Point2f(src.Cols / 2f, src.Rows / 2f);
var rotationMat = Cv2.GetRotationMatrix2D(imageCenter, angle, scale);
Cv2.WarpAffine(src, dst, rotationMat, src.Size());
}
示例10: Main
static void Main(string[] args)
{
var srcImage = new Mat(@"..\..\Images\cvlbl.png");
Cv2.ImShow("Source", srcImage);
Cv2.WaitKey(1); // do events
var binaryImage = new Mat(srcImage.Size(), MatType.CV_8UC1);
Cv2.CvtColor(srcImage, binaryImage, ColorConversion.BgrToGray);
Cv2.Threshold(binaryImage, binaryImage, thresh: 100, maxval: 255, type: ThresholdType.Binary);
var detectorParams = new SimpleBlobDetector.Params
{
//MinDistBetweenBlobs = 10, // 10 pixels between blobs
//MinRepeatability = 1,
//MinThreshold = 100,
//MaxThreshold = 255,
//ThresholdStep = 5,
FilterByArea = false,
//FilterByArea = true,
//MinArea = 0.001f, // 10 pixels squared
//MaxArea = 500,
FilterByCircularity = false,
//FilterByCircularity = true,
//MinCircularity = 0.001f,
FilterByConvexity = false,
//FilterByConvexity = true,
//MinConvexity = 0.001f,
//MaxConvexity = 10,
FilterByInertia = false,
//FilterByInertia = true,
//MinInertiaRatio = 0.001f,
FilterByColor = false
//FilterByColor = true,
//BlobColor = 255 // to extract light blobs
};
var simpleBlobDetector = new SimpleBlobDetector(detectorParams);
var keyPoints = simpleBlobDetector.Detect(binaryImage);
Console.WriteLine("keyPoints: {0}", keyPoints.Length);
foreach (var keyPoint in keyPoints)
{
Console.WriteLine("X: {0}, Y: {1}", keyPoint.Pt.X, keyPoint.Pt.Y);
}
var imageWithKeyPoints = new Mat();
Cv2.DrawKeypoints(
image: binaryImage,
keypoints: keyPoints,
outImage: imageWithKeyPoints,
color: Scalar.FromRgb(255, 0, 0),
flags: DrawMatchesFlags.DrawRichKeypoints);
Cv2.ImShow("Key Points", imageWithKeyPoints);
Cv2.WaitKey(1); // do events
Cv2.WaitKey(0);
Cv2.DestroyAllWindows();
srcImage.Dispose();
imageWithKeyPoints.Dispose();
}