本文整理汇总了C#中BigInteger.testBit方法的典型用法代码示例。如果您正苦于以下问题:C# BigInteger.testBit方法的具体用法?C# BigInteger.testBit怎么用?C# BigInteger.testBit使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类BigInteger
的用法示例。
在下文中一共展示了BigInteger.testBit方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: pow2ModPow
/**
* It requires that all parameters be positive.
*
* @return {@code base<sup>exponent</sup> mod (2<sup>j</sup>)}.
* @see BigInteger#modPow(BigInteger, BigInteger)
*/
internal static BigInteger pow2ModPow(BigInteger baseJ, BigInteger exponent, int j)
{
// PRE: (base > 0), (exponent > 0) and (j > 0)
BigInteger res = BigInteger.ONE;
BigInteger e = exponent.copy();
BigInteger baseMod2toN = baseJ.copy();
BigInteger res2;
/*
* If 'base' is odd then it's coprime with 2^j and phi(2^j) = 2^(j-1);
* so we can reduce reduce the exponent (mod 2^(j-1)).
*/
if (baseJ.testBit(0)) {
inplaceModPow2(e, j - 1);
}
inplaceModPow2(baseMod2toN, j);
for (int i = e.bitLength() - 1; i >= 0; i--) {
res2 = res.copy();
inplaceModPow2(res2, j);
res = res.multiply(res2);
if (BitLevel.testBit(e, i)) {
res = res.multiply(baseMod2toN);
inplaceModPow2(res, j);
}
}
inplaceModPow2(res, j);
return res;
}
示例2: nextProbablePrime
/**
* It uses the sieve of Eratosthenes to discard several composite numbers in
* some appropriate range (at the moment {@code [this, this + 1024]}). After
* this process it applies the Miller-Rabin test to the numbers that were
* not discarded in the sieve.
*
* @see BigInteger#nextProbablePrime()
* @see #millerRabin(BigInteger, int)
*/
internal static BigInteger nextProbablePrime(BigInteger n)
{
// PRE: n >= 0
int i, j;
int certainty;
int gapSize = 1024; // for searching of the next probable prime number
int []modules = new int[primes.Length];
bool[] isDivisible = new bool[gapSize];
BigInteger startPoint;
BigInteger probPrime;
// If n < "last prime of table" searches next prime in the table
if ((n.numberLength == 1) && (n.digits[0] >= 0)
&& (n.digits[0] < primes[primes.Length - 1])) {
for (i = 0; n.digits[0] >= primes[i]; i++) {
;
}
return BIprimes[i];
}
/*
* Creates a "N" enough big to hold the next probable prime Note that: N <
* "next prime" < 2*N
*/
startPoint = new BigInteger(1, n.numberLength,
new int[n.numberLength + 1]);
java.lang.SystemJ.arraycopy(n.digits, 0, startPoint.digits, 0, n.numberLength);
// To fix N to the "next odd number"
if (n.testBit(0)) {
Elementary.inplaceAdd(startPoint, 2);
} else {
startPoint.digits[0] |= 1;
}
// To set the improved certainly of Miller-Rabin
j = startPoint.bitLength();
for (certainty = 2; j < BITS[certainty]; certainty++) {
;
}
// To calculate modules: N mod p1, N mod p2, ... for first primes.
for (i = 0; i < primes.Length; i++) {
modules[i] = Division.remainder(startPoint, primes[i]) - gapSize;
}
while (true) {
// At this point, all numbers in the gap are initialized as
// probably primes
java.util.Arrays<Object>.fill(isDivisible, false);
// To discard multiples of first primes
for (i = 0; i < primes.Length; i++) {
modules[i] = (modules[i] + gapSize) % primes[i];
j = (modules[i] == 0) ? 0 : (primes[i] - modules[i]);
for (; j < gapSize; j += primes[i]) {
isDivisible[j] = true;
}
}
// To execute Miller-Rabin for non-divisible numbers by all first
// primes
for (j = 0; j < gapSize; j++) {
if (!isDivisible[j]) {
probPrime = startPoint.copy();
Elementary.inplaceAdd(probPrime, j);
if (millerRabin(probPrime, certainty)) {
return probPrime;
}
}
}
Elementary.inplaceAdd(startPoint, gapSize);
}
}
示例3: modInverseMontgomery
/**
* Calculates a.modInverse(p) Based on: Savas, E; Koc, C "The Montgomery Modular
* Inverse - Revised"
*/
internal static BigInteger modInverseMontgomery(BigInteger a, BigInteger p)
{
if (a.sign == 0){
// ZERO hasn't inverse
// math.19: BigInteger not invertible
throw new ArithmeticException("BigInteger not invertible");
}
if (!p.testBit(0)){
// montgomery inverse require even modulo
return modInverseHars(a, p);
}
int m = p.numberLength * 32;
// PRE: a \in [1, p - 1]
BigInteger u, v, r, s;
u = p.copy(); // make copy to use inplace method
v = a.copy();
int max = java.lang.Math.max(v.numberLength, u.numberLength);
r = new BigInteger(1, 1, new int[max + 1]);
s = new BigInteger(1, 1, new int[max + 1]);
s.digits[0] = 1;
// s == 1 && v == 0
int k = 0;
int lsbu = u.getLowestSetBit();
int lsbv = v.getLowestSetBit();
int toShift;
if (lsbu > lsbv) {
BitLevel.inplaceShiftRight(u, lsbu);
BitLevel.inplaceShiftRight(v, lsbv);
BitLevel.inplaceShiftLeft(r, lsbv);
k += lsbu - lsbv;
} else {
BitLevel.inplaceShiftRight(u, lsbu);
BitLevel.inplaceShiftRight(v, lsbv);
BitLevel.inplaceShiftLeft(s, lsbu);
k += lsbv - lsbu;
}
r.sign = 1;
while (v.signum() > 0) {
// INV v >= 0, u >= 0, v odd, u odd (except last iteration when v is even (0))
while (u.compareTo(v) > BigInteger.EQUALS) {
Elementary.inplaceSubtract(u, v);
toShift = u.getLowestSetBit();
BitLevel.inplaceShiftRight(u, toShift);
Elementary.inplaceAdd(r, s);
BitLevel.inplaceShiftLeft(s, toShift);
k += toShift;
}
while (u.compareTo(v) <= BigInteger.EQUALS) {
Elementary.inplaceSubtract(v, u);
if (v.signum() == 0)
break;
toShift = v.getLowestSetBit();
BitLevel.inplaceShiftRight(v, toShift);
Elementary.inplaceAdd(s, r);
BitLevel.inplaceShiftLeft(r, toShift);
k += toShift;
}
}
if (!u.isOne()){
// in u is stored the gcd
// math.19: BigInteger not invertible.
throw new ArithmeticException("BigInteger not invertible");
}
if (r.compareTo(p) >= BigInteger.EQUALS) {
Elementary.inplaceSubtract(r, p);
}
r = p.subtract(r);
// Have pair: ((BigInteger)r, (Integer)k) where r == a^(-1) * 2^k mod (module)
int n1 = calcN(p);
if (k > m) {
r = monPro(r, BigInteger.ONE, p, n1);
k = k - m;
}
r = monPro(r, BigInteger.getPowerOfTwo(m - k), p, n1);
return r;
}
示例4: isProbablePrime
/**
* @see BigInteger#isProbablePrime(int)
* @see #millerRabin(BigInteger, int)
* @ar.org.fitc.ref Optimizations: "A. Menezes - Handbook of applied
* Cryptography, Chapter 4".
*/
internal static bool isProbablePrime(BigInteger n, int certainty)
{
// PRE: n >= 0;
if ((certainty <= 0) || ((n.numberLength == 1) && (n.digits[0] == 2))) {
return true;
}
// To discard all even numbers
if (!n.testBit(0)) {
return false;
}
// To check if 'n' exists in the table (it fit in 10 bits)
if ((n.numberLength == 1) && ((n.digits[0] & 0XFFFFFC00) == 0)) {
return (java.util.Arrays<Object>.binarySearch(primes, n.digits[0]) >= 0);
}
// To check if 'n' is divisible by some prime of the table
for (int i = 1; i < primes.Length; i++) {
if (Division.remainderArrayByInt(n.digits, n.numberLength,
primes[i]) == 0) {
return false;
}
}
// To set the number of iterations necessary for Miller-Rabin test
int iJ;
int bitLength = n.bitLength();
for (iJ = 2; bitLength < BITS[iJ]; iJ++) {
;
}
certainty = java.lang.Math.min(iJ, 1 + ((certainty - 1) >> 1));
return millerRabin(n, certainty);
}