当前位置: 首页>>代码示例>>C#>>正文


C# BigInteger.modPow方法代码示例

本文整理汇总了C#中BigInteger.modPow方法的典型用法代码示例。如果您正苦于以下问题:C# BigInteger.modPow方法的具体用法?C# BigInteger.modPow怎么用?C# BigInteger.modPow使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在BigInteger的用法示例。


在下文中一共展示了BigInteger.modPow方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: Encrypt

        public byte[] Encrypt(byte[] source)
        {
            BigInteger d = new BigInteger(paramsters.D);
            BigInteger n = new BigInteger(paramsters.Modulus);
            int sug = 127;
            int len = source.Length;
            int cycle = 0;
            if ((len % sug) == 0) cycle = len / sug; else cycle = len / sug + 1;

            ArrayList temp = new ArrayList();
            int blockLen = 0;
            for (int i = 0; i < cycle; i++)
            {
                if (len >= sug) blockLen = sug; else blockLen = len;

                byte[] context = new byte[blockLen];
                int po = i * sug;
                Array.Copy(source, po, context, 0, blockLen);

                BigInteger biText = new BigInteger(context);
                BigInteger biEnText = biText.modPow(d, n);

                byte[] b = biEnText.getBytes();
                temp.AddRange(b);
                len -= blockLen;
            }
            return (byte[])temp.ToArray(typeof(byte));
        }
开发者ID:wykoooo,项目名称:copy-dotnet-library,代码行数:28,代码来源:RSAPrivateKeyCrypto.cs

示例2: Validate

        public bool Validate()
        {
            BigInteger calculatedHash = new BigInteger(this.ToString(), _RADIX);
            bool ret = true;

            //Calculate the hash
            calculatedHash = calculatedHash.modPow(new BigInteger(17), _n);

            //Compare our real hash and the calculated hash
            byte[] ourHash = _hash.getBytes();
            byte[] myHash = calculatedHash.getBytes();
            if (ourHash.Length == myHash.Length)
            {
                for (int i = 0; i <= ourHash.Length - 1; i++)
                {
                    if (ourHash[i] != myHash[i])
                    {
                        ret = false;

                        break; // TODO: might not be correct. Was : Exit For
                    }
                }
            }
            else
            {
                //Not even the right length, it's crap
                ret = false;
            }

            return ret;
        }
开发者ID:persalteas,项目名称:KnightOS,代码行数:31,代码来源:Signature.cs

示例3: Decrypt

        public byte[] Decrypt(byte[] source)
        {
            BigInteger e = new BigInteger(paramsters.Exponent);
            BigInteger n = new BigInteger(paramsters.Modulus);

            int bk = 128;
            int len = source.Length;
            int cycle = 0;
            if ((len % bk) == 0) cycle = len / bk; else cycle = len / bk + 1;

            ArrayList temp = new ArrayList();
            int blockLen = 0;
            for (int i = 0; i < cycle; i++)
            {
                if (len >= bk) blockLen = bk; else blockLen = len;

                byte[] context = new byte[blockLen];
                int po = i * bk;
                Array.Copy(source, po, context, 0, blockLen);

                BigInteger biText = new BigInteger(context);
                BigInteger biEnText = biText.modPow(e, n);

                byte[] b = biEnText.getBytes();
                temp.AddRange(b);
                len -= blockLen;
            }
            return (byte[])temp.ToArray(typeof(byte));
        }
开发者ID:wykoooo,项目名称:copy-dotnet-library,代码行数:29,代码来源:RSAPrivateKeyCrypto.cs

示例4: ModSqrt

 //функция вычисления квадратоного корня по модулю простого числа q
 public BigInteger ModSqrt(BigInteger a, BigInteger q)
 {
     BigInteger b = new BigInteger();
     do
     {
         b.genRandomBits(255, new Random());
     } while (Legendre(b, q) == 1);
     BigInteger s = 0;
     BigInteger t = q - 1;
     while ((t & 1) != 1)
     {
         s++;
         t = t >> 1;
     }
     BigInteger InvA = a.modInverse(q);
     BigInteger c = b.modPow(t, q);
     BigInteger r = a.modPow(((t + 1) / 2), q);
     BigInteger d = new BigInteger();
     for (int i = 1; i < s; i++)
     {
         BigInteger temp = 2;
         temp = temp.modPow((s - i - 1), q);
         d = (r.modPow(2, q) * InvA).modPow(temp, q);
         if (d == (q - 1))
             r = (r * c) % q;
         c = c.modPow(2, q);
     }
     return r;
 }
开发者ID:msCube,项目名称:Scrambler,代码行数:30,代码来源:DSGost.cs

示例5: RSATest

        //***********************************************************************
        // Tests the correct implementation of the modulo exponential function
        // using RSA encryption and decryption (using pre-computed encryption and
        // decryption keys).
        //***********************************************************************

        public static void RSATest(int rounds)
        {
                Random rand = new Random(1);
	        byte[] val = new byte[64];

	        // private and public key
                BigInteger bi_e = new BigInteger("a932b948feed4fb2b692609bd22164fc9edb59fae7880cc1eaff7b3c9626b7e5b241c27a974833b2622ebe09beb451917663d47232488f23a117fc97720f1e7", 16);
                BigInteger bi_d = new BigInteger("4adf2f7a89da93248509347d2ae506d683dd3a16357e859a980c4f77a4e2f7a01fae289f13a851df6e9db5adaa60bfd2b162bbbe31f7c8f828261a6839311929d2cef4f864dde65e556ce43c89bbbf9f1ac5511315847ce9cc8dc92470a747b8792d6a83b0092d2e5ebaf852c85cacf34278efa99160f2f8aa7ee7214de07b7", 16);
                BigInteger bi_n = new BigInteger("e8e77781f36a7b3188d711c2190b560f205a52391b3479cdb99fa010745cbeba5f2adc08e1de6bf38398a0487c4a73610d94ec36f17f3f46ad75e17bc1adfec99839589f45f95ccc94cb2a5c500b477eb3323d8cfab0c8458c96f0147a45d27e45a4d11d54d77684f65d48f15fafcc1ba208e71e921b9bd9017c16a5231af7f", 16);

                Console.WriteLine("e =\n" + bi_e.ToString(10));
                Console.WriteLine("\nd =\n" + bi_d.ToString(10));
                Console.WriteLine("\nn =\n" + bi_n.ToString(10) + "\n");

	        for(int count = 0; count < rounds; count++)
	        {
	                // generate data of random length
		        int t1 = 0;
		        while(t1 == 0)
			        t1 = (int)(rand.NextDouble() * 65);

		        bool done = false;
		        while(!done)
		        {
			        for(int i = 0; i < 64; i++)
			        {
				        if(i < t1)
					        val[i] = (byte)(rand.NextDouble() * 256);
				        else
					        val[i] = 0;

				        if(val[i] != 0)
					        done = true;
			        }
		        }

		        while(val[0] == 0)
		                val[0] = (byte)(rand.NextDouble() * 256);

                        Console.Write("Round = " + count);

                        // encrypt and decrypt data
		        BigInteger bi_data = new BigInteger(val, t1);
                        BigInteger bi_encrypted = bi_data.modPow(bi_e, bi_n);
                        BigInteger bi_decrypted = bi_encrypted.modPow(bi_d, bi_n);

                        // compare
                        if(bi_decrypted != bi_data)
	        	{
		        	Console.WriteLine("\nError at round " + count);
                                Console.WriteLine(bi_data + "\n");
			        return;
		        }
		        Console.WriteLine(" <PASSED>.");
	        }

        }
开发者ID:AudriusKniuras,项目名称:ChatClientServer,代码行数:63,代码来源:BigInteger.cs

示例6: Calculate_Ri

 public static BigInteger Calculate_Ri(
                                       BigInteger argG,
                                       BigInteger argP,
                                       BigInteger argTi
                                      )
 {
   return argG.modPow(argTi, argP);
 }
开发者ID:happyjedi,项目名称:Composit_EDS_by_DLOG,代码行数:8,代码来源:Sign.cs

示例7: BI_Generate_Yi

 public static BigInteger BI_Generate_Yi(
                                          BigInteger argP,
                                          BigInteger argG,
                                          BigInteger argKi
                                         )
 {
   return argG.modPow(argKi, argP);
 }
开发者ID:happyjedi,项目名称:Composit_EDS_by_DLOG,代码行数:8,代码来源:Sign.cs

示例8: verifySig

        public static bool verifySig(BigInteger m, BigInteger s, BigInteger e, BigInteger n)
        {
            BigInteger mtest = new BigInteger(s.modPow(e, n));

            if (m == mtest)
                return true;
            else
                return false;
        }
开发者ID:Rotariu-Stefan,项目名称:INFO-SI,代码行数:9,代码来源:rsa.cs

示例9: Calculate_Si

 public static BigInteger Calculate_Si(
                                       BigInteger argTi,
                                       BigInteger argHi,
                                       BigInteger argKi,
                                       BigInteger argE,
                                       BigInteger argQ
                                      )
 {
   return (argTi - (argHi.modPow(1, argQ) * argKi.modPow(1, argQ) * argE.modPow(1, argQ)).modPow(1, argQ));
 }
开发者ID:happyjedi,项目名称:Composit_EDS_by_DLOG,代码行数:10,代码来源:Sign.cs

示例10: EncryptSymmetricKey

        public string EncryptSymmetricKey(string symmKey, BigInteger e, BigInteger n)
        {
            BigInteger cryptoSymmKey = new BigInteger(Convert.FromBase64String(symmKey));

            cryptoSymmKey = cryptoSymmKey.modPow(e,n);

            string symmKeyString = Convert.ToBase64String(cryptoSymmKey.getBytes());

            return symmKeyString;
        }
开发者ID:AudriusKniuras,项目名称:ChatClientServer,代码行数:10,代码来源:EncryptionRSA.cs

示例11: verifySig

 public static bool verifySig(BigInteger m, BigInteger s, BigInteger e, BigInteger n)
 {
     //    Console.WriteLine("\nE: " + e);
     //    Console.WriteLine("\nN: " + n);
     BigInteger mtest = new BigInteger(s.modPow(e, n));
     //    Console.WriteLine("\nM: " + m);
     //    Console.WriteLine("\nMtest: " + mtest);
     if (m == mtest)
         return true;
     else
         return false;
 }
开发者ID:Rotariu-Stefan,项目名称:INFO-SI,代码行数:12,代码来源:rsa.cs

示例12: DecryptSymmetricKey

        public string DecryptSymmetricKey(string encrSymmKey, BigInteger d, BigInteger n)
        {
            BigInteger encryptedSymmKey = new BigInteger(Convert.FromBase64String(encrSymmKey));

            //can be redone with RSA for efficiency
            BigInteger decryptedSymmKey = encryptedSymmKey.modPow(d, n);

            byte[] symmKeyBytes = decryptedSymmKey.getBytes();

            string symmKey = Encoding.ASCII.GetString(symmKeyBytes);

            return symmKey;
        }
开发者ID:AudriusKniuras,项目名称:ChatClientServer,代码行数:13,代码来源:EncryptionRSA.cs

示例13: createSig

 public static BigInteger createSig(BigInteger m, rsakey rk)
 {
     BigInteger d = rk.getk();
     BigInteger n = rk.getn();
     return m.modPow(d, n);
 }
开发者ID:Rotariu-Stefan,项目名称:INFO-SI,代码行数:6,代码来源:rsa.cs

示例14: RSATest2

        //***********************************************************************
        // Tests the correct implementation of the modulo exponential and
        // inverse modulo functions using RSA encryption and decryption.  The two
        // pseudoprimes p and q are fixed, but the two RSA keys are generated
        // for each round of testing.
        //***********************************************************************

        public static void RSATest2(int rounds)
        {
                Random rand = new Random();
	        byte[] val = new byte[64];

                byte[] pseudoPrime1 = {
                        (byte)0x85, (byte)0x84, (byte)0x64, (byte)0xFD, (byte)0x70, (byte)0x6A,
                        (byte)0x9F, (byte)0xF0, (byte)0x94, (byte)0x0C, (byte)0x3E, (byte)0x2C,
                        (byte)0x74, (byte)0x34, (byte)0x05, (byte)0xC9, (byte)0x55, (byte)0xB3,
                        (byte)0x85, (byte)0x32, (byte)0x98, (byte)0x71, (byte)0xF9, (byte)0x41,
                        (byte)0x21, (byte)0x5F, (byte)0x02, (byte)0x9E, (byte)0xEA, (byte)0x56,
                        (byte)0x8D, (byte)0x8C, (byte)0x44, (byte)0xCC, (byte)0xEE, (byte)0xEE,
                        (byte)0x3D, (byte)0x2C, (byte)0x9D, (byte)0x2C, (byte)0x12, (byte)0x41,
                        (byte)0x1E, (byte)0xF1, (byte)0xC5, (byte)0x32, (byte)0xC3, (byte)0xAA,
                        (byte)0x31, (byte)0x4A, (byte)0x52, (byte)0xD8, (byte)0xE8, (byte)0xAF,
                        (byte)0x42, (byte)0xF4, (byte)0x72, (byte)0xA1, (byte)0x2A, (byte)0x0D,
                        (byte)0x97, (byte)0xB1, (byte)0x31, (byte)0xB3,
                };

                byte[] pseudoPrime2 = {
                        (byte)0x99, (byte)0x98, (byte)0xCA, (byte)0xB8, (byte)0x5E, (byte)0xD7,
                        (byte)0xE5, (byte)0xDC, (byte)0x28, (byte)0x5C, (byte)0x6F, (byte)0x0E,
                        (byte)0x15, (byte)0x09, (byte)0x59, (byte)0x6E, (byte)0x84, (byte)0xF3,
                        (byte)0x81, (byte)0xCD, (byte)0xDE, (byte)0x42, (byte)0xDC, (byte)0x93,
                        (byte)0xC2, (byte)0x7A, (byte)0x62, (byte)0xAC, (byte)0x6C, (byte)0xAF,
                        (byte)0xDE, (byte)0x74, (byte)0xE3, (byte)0xCB, (byte)0x60, (byte)0x20,
                        (byte)0x38, (byte)0x9C, (byte)0x21, (byte)0xC3, (byte)0xDC, (byte)0xC8,
                        (byte)0xA2, (byte)0x4D, (byte)0xC6, (byte)0x2A, (byte)0x35, (byte)0x7F,
                        (byte)0xF3, (byte)0xA9, (byte)0xE8, (byte)0x1D, (byte)0x7B, (byte)0x2C,
                        (byte)0x78, (byte)0xFA, (byte)0xB8, (byte)0x02, (byte)0x55, (byte)0x80,
                        (byte)0x9B, (byte)0xC2, (byte)0xA5, (byte)0xCB,
                };


                BigInteger bi_p = new BigInteger(pseudoPrime1);
                BigInteger bi_q = new BigInteger(pseudoPrime2);
                BigInteger bi_pq = (bi_p-1)*(bi_q-1);
                BigInteger bi_n = bi_p * bi_q;

	        for(int count = 0; count < rounds; count++)
	        {
	                // generate private and public key
                        BigInteger bi_e = bi_pq.genCoPrime(512, rand);
                        BigInteger bi_d = bi_e.modInverse(bi_pq);

                        Console.WriteLine("\ne =\n" + bi_e.ToString(10));
                        Console.WriteLine("\nd =\n" + bi_d.ToString(10));
                        Console.WriteLine("\nn =\n" + bi_n.ToString(10) + "\n");

	                // generate data of random length
		        int t1 = 0;
		        while(t1 == 0)
			        t1 = (int)(rand.NextDouble() * 65);

		        bool done = false;
		        while(!done)
		        {
			        for(int i = 0; i < 64; i++)
			        {
				        if(i < t1)
					        val[i] = (byte)(rand.NextDouble() * 256);
				        else
					        val[i] = 0;

				        if(val[i] != 0)
					        done = true;
			        }
		        }

		        while(val[0] == 0)
		                val[0] = (byte)(rand.NextDouble() * 256);

                        Console.Write("Round = " + count);

                        // encrypt and decrypt data
		        BigInteger bi_data = new BigInteger(val, t1);
                        BigInteger bi_encrypted = bi_data.modPow(bi_e, bi_n);
                        BigInteger bi_decrypted = bi_encrypted.modPow(bi_d, bi_n);

                        // compare
                        if(bi_decrypted != bi_data)
	        	{
		        	Console.WriteLine("\nError at round " + count);
                                Console.WriteLine(bi_data + "\n");
			        return;
		        }
		        Console.WriteLine(" <PASSED>.");
	        }

        }
开发者ID:AudriusKniuras,项目名称:ChatClientServer,代码行数:97,代码来源:BigInteger.cs

示例15: SolovayStrassenTest

        //***********************************************************************
        // Probabilistic prime test based on Solovay-Strassen (Euler Criterion)
        //
        // p is probably prime if for any a < p (a is not multiple of p),
        // a^((p-1)/2) mod p = J(a, p)
        //
        // where J is the Jacobi symbol.
        //
        // Otherwise, p is composite.
        //
        // Returns
        // -------
        // True if "this" is a Euler pseudoprime to randomly chosen
        // bases.  The number of chosen bases is given by the "confidence"
        // parameter.
        //
        // False if "this" is definitely NOT prime.
        //
        //***********************************************************************

        public bool SolovayStrassenTest(int confidence)
        {
                BigInteger thisVal;
                if((this.data[maxLength-1] & 0x80000000) != 0)        // negative
                        thisVal = -this;
                else
                        thisVal = this;

                if(thisVal.dataLength == 1)
                {
                        // test small numbers
                        if(thisVal.data[0] == 0 || thisVal.data[0] == 1)
                                return false;
                        else if(thisVal.data[0] == 2 || thisVal.data[0] == 3)
                                return true;
                }

                if((thisVal.data[0] & 0x1) == 0)     // even numbers
                        return false;


	        int bits = thisVal.bitCount();
	        BigInteger a = new BigInteger();
	        BigInteger p_sub1 = thisVal - 1;
	        BigInteger p_sub1_shift = p_sub1 >> 1;

	        Random rand = new Random();

	        for(int round = 0; round < confidence; round++)
	        {
		        bool done = false;

		        while(!done)		// generate a < n
		        {
			        int testBits = 0;

			        // make sure "a" has at least 2 bits
			        while(testBits < 2)
				        testBits = (int)(rand.NextDouble() * bits);

			        a.genRandomBits(testBits, rand);

			        int byteLen = a.dataLength;

                                // make sure "a" is not 0
			        if(byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
				        done = true;
		        }

                        // check whether a factor exists (fix for version 1.03)
		        BigInteger gcdTest = a.gcd(thisVal);
                        if(gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
                                return false;

		        // calculate a^((p-1)/2) mod p

		        BigInteger expResult = a.modPow(p_sub1_shift, thisVal);
		        if(expResult == p_sub1)
		                expResult = -1;

                        // calculate Jacobi symbol
                        BigInteger jacob = Jacobi(a, thisVal);

                        //Console.WriteLine("a = " + a.ToString(10) + " b = " + thisVal.ToString(10));
                        //Console.WriteLine("expResult = " + expResult.ToString(10) + " Jacob = " + jacob.ToString(10));

                        // if they are different then it is not prime
                        if(expResult != jacob)
			        return false;
	        }

	        return true;
        }
开发者ID:AudriusKniuras,项目名称:ChatClientServer,代码行数:93,代码来源:BigInteger.cs


注:本文中的BigInteger.modPow方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。