当前位置: 首页>>代码示例>>C#>>正文


C# BigInteger.subtract方法代码示例

本文整理汇总了C#中BigInteger.subtract方法的典型用法代码示例。如果您正苦于以下问题:C# BigInteger.subtract方法的具体用法?C# BigInteger.subtract怎么用?C# BigInteger.subtract使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在BigInteger的用法示例。


在下文中一共展示了BigInteger.subtract方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: millerRabin

        /**
         * The Miller-Rabin primality test.
         *
         * @param n the input number to be tested.
         * @param t the number of trials.
         * @return {@code false} if the number is definitely compose, otherwise
         *         {@code true} with probability {@code 1 - 4<sup>(-t)</sup>}.
         * @ar.org.fitc.ref "D. Knuth, The Art of Computer Programming Vo.2, Section
         *                  4.5.4., Algorithm P"
         */
        private static bool millerRabin(BigInteger n, int t)
        {
            // PRE: n >= 0, t >= 0
            BigInteger x; // x := UNIFORM{2...n-1}
            BigInteger y; // y := x^(q * 2^j) mod n
            BigInteger n_minus_1 = n.subtract(BigInteger.ONE); // n-1
            int bitLength = n_minus_1.bitLength(); // ~ log2(n-1)
            // (q,k) such that: n-1 = q * 2^k and q is odd
            int k = n_minus_1.getLowestSetBit();
            BigInteger q = n_minus_1.shiftRight(k);
            java.util.Random rnd = new java.util.Random();

            for (int i = 0; i < t; i++) {
                // To generate a witness 'x', first it use the primes of table
                if (i < primes.Length) {
                    x = BIprimes[i];
                } else {/*
                         * It generates random witness only if it's necesssary. Note
                         * that all methods would call Miller-Rabin with t <= 50 so
                         * this part is only to do more robust the algorithm
                         */
                    do {
                        x = new BigInteger(bitLength, rnd);
                    } while ((x.compareTo(n) >= BigInteger.EQUALS) || (x.sign == 0)
                            || x.isOne());
                }
                y = x.modPow(q, n);
                if (y.isOne() || y.equals(n_minus_1)) {
                    continue;
                }
                for (int j = 1; j < k; j++) {
                    if (y.equals(n_minus_1)) {
                        continue;
                    }
                    y = y.multiply(y).mod(n);
                    if (y.isOne()) {
                        return false;
                    }
                }
                if (!y.equals(n_minus_1)) {
                    return false;
                }
            }
            return true;
        }
开发者ID:sailesh341,项目名称:JavApi,代码行数:55,代码来源:Primality.cs

示例2: modInverseMontgomery

        /**
         * Calculates a.modInverse(p) Based on: Savas, E; Koc, C "The Montgomery Modular
         * Inverse - Revised"
         */
        internal static BigInteger modInverseMontgomery(BigInteger a, BigInteger p)
        {
            if (a.sign == 0){
                // ZERO hasn't inverse
                // math.19: BigInteger not invertible
                throw new ArithmeticException("BigInteger not invertible");
                }

            if (!p.testBit(0)){
                // montgomery inverse require even modulo
                return modInverseHars(a, p);
            }

            int m = p.numberLength * 32;
            // PRE: a \in [1, p - 1]
            BigInteger u, v, r, s;
            u = p.copy();  // make copy to use inplace method
            v = a.copy();
            int max = java.lang.Math.max(v.numberLength, u.numberLength);
            r = new BigInteger(1, 1, new int[max + 1]);
            s = new BigInteger(1, 1, new int[max + 1]);
            s.digits[0] = 1;
            // s == 1 && v == 0

            int k = 0;

            int lsbu = u.getLowestSetBit();
            int lsbv = v.getLowestSetBit();
            int toShift;

            if (lsbu > lsbv) {
                BitLevel.inplaceShiftRight(u, lsbu);
                BitLevel.inplaceShiftRight(v, lsbv);
                BitLevel.inplaceShiftLeft(r, lsbv);
                k += lsbu - lsbv;
            } else {
                BitLevel.inplaceShiftRight(u, lsbu);
                BitLevel.inplaceShiftRight(v, lsbv);
                BitLevel.inplaceShiftLeft(s, lsbu);
                k += lsbv - lsbu;
            }

            r.sign = 1;
            while (v.signum() > 0) {
                // INV v >= 0, u >= 0, v odd, u odd (except last iteration when v is even (0))

                while (u.compareTo(v) > BigInteger.EQUALS) {
                    Elementary.inplaceSubtract(u, v);
                    toShift = u.getLowestSetBit();
                    BitLevel.inplaceShiftRight(u, toShift);
                    Elementary.inplaceAdd(r, s);
                    BitLevel.inplaceShiftLeft(s, toShift);
                    k += toShift;
                }

                while (u.compareTo(v) <= BigInteger.EQUALS) {
                    Elementary.inplaceSubtract(v, u);
                    if (v.signum() == 0)
                        break;
                    toShift = v.getLowestSetBit();
                    BitLevel.inplaceShiftRight(v, toShift);
                    Elementary.inplaceAdd(s, r);
                    BitLevel.inplaceShiftLeft(r, toShift);
                    k += toShift;
                }
            }
            if (!u.isOne()){
                // in u is stored the gcd
                // math.19: BigInteger not invertible.
                throw new ArithmeticException("BigInteger not invertible");
            }
            if (r.compareTo(p) >= BigInteger.EQUALS) {
                Elementary.inplaceSubtract(r, p);
            }

            r = p.subtract(r);

            // Have pair: ((BigInteger)r, (Integer)k) where r == a^(-1) * 2^k mod (module)
            int n1 = calcN(p);
            if (k > m) {
                r = monPro(r, BigInteger.ONE, p, n1);
                k = k - m;
            }

            r = monPro(r, BigInteger.getPowerOfTwo(m - k), p, n1);
            return r;
        }
开发者ID:sailesh341,项目名称:JavApi,代码行数:91,代码来源:Division.cs

示例3: karatsuba

        /**
         * Performs the multiplication with the Karatsuba's algorithm.
         * <b>Karatsuba's algorithm:</b>
         *<tt>
         *             u = u<sub>1</sub> * B + u<sub>0</sub><br>
         *             v = v<sub>1</sub> * B + v<sub>0</sub><br>
         *
         *
         *  u*v = (u<sub>1</sub> * v<sub>1</sub>) * B<sub>2</sub> + ((u<sub>1</sub> - u<sub>0</sub>) * (v<sub>0</sub> - v<sub>1</sub>) + u<sub>1</sub> * v<sub>1</sub> +
         *  u<sub>0</sub> * v<sub>0</sub> ) * B + u<sub>0</sub> * v<sub>0</sub><br>
         *</tt>
         * @param op1 first factor of the product
         * @param op2 second factor of the product
         * @return {@code op1 * op2}
         * @see #multiply(BigInteger, BigInteger)
         */
        internal static BigInteger karatsuba(BigInteger op1, BigInteger op2)
        {
            BigInteger temp;
            if (op2.numberLength > op1.numberLength) {
                temp = op1;
                op1 = op2;
                op2 = temp;
            }
            if (op2.numberLength < whenUseKaratsuba) {
                return multiplyPAP(op1, op2);
            }
            /*  Karatsuba:  u = u1*B + u0
             *              v = v1*B + v0
             *  u*v = (u1*v1)*B^2 + ((u1-u0)*(v0-v1) + u1*v1 + u0*v0)*B + u0*v0
             */
            // ndiv2 = (op1.numberLength / 2) * 32
            int ndiv2 = (int)((op1.numberLength & 0xFFFFFFFE) << 4);
            BigInteger upperOp1 = op1.shiftRight(ndiv2);
            BigInteger upperOp2 = op2.shiftRight(ndiv2);
            BigInteger lowerOp1 = op1.subtract(upperOp1.shiftLeft(ndiv2));
            BigInteger lowerOp2 = op2.subtract(upperOp2.shiftLeft(ndiv2));

            BigInteger upper = karatsuba(upperOp1, upperOp2);
            BigInteger lower = karatsuba(lowerOp1, lowerOp2);
            BigInteger middle = karatsuba( upperOp1.subtract(lowerOp1),
                    lowerOp2.subtract(upperOp2));
            middle = middle.add(upper).add(lower);
            middle = middle.shiftLeft(ndiv2);
            upper = upper.shiftLeft(ndiv2 << 1);

            return upper.add(middle).add(lower);
        }
开发者ID:sailesh341,项目名称:JavApi,代码行数:48,代码来源:Multiplication.cs


注:本文中的BigInteger.subtract方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。