本文整理汇总了C#中BigInteger.GenRandomBits方法的典型用法代码示例。如果您正苦于以下问题:C# BigInteger.GenRandomBits方法的具体用法?C# BigInteger.GenRandomBits怎么用?C# BigInteger.GenRandomBits使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类BigInteger
的用法示例。
在下文中一共展示了BigInteger.GenRandomBits方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: SqrtTest
//***********************************************************************
// Tests the correct implementation of sqrt() method.
//***********************************************************************
public static void SqrtTest(int rounds)
{
Random rand = new Random();
for(int count = 0; count < rounds; count++)
{
// generate data of random length
int t1 = 0;
while(t1 == 0)
t1 = (int)(rand.NextDouble() * 1024);
Console.Write("Round = " + count);
BigInteger a = new BigInteger();
a.GenRandomBits(t1, rand);
BigInteger b = a.Sqrt();
BigInteger c = (b+1)*(b+1);
// check that b is the largest integer such that b*b <= a
if(c <= a)
{
Console.WriteLine("\nError at round " + count);
Console.WriteLine(a + "\n");
return;
}
Console.WriteLine(" <PASSED>.");
}
}
示例2: Auth_AuthChallengeResult
//internal class AuthLogonChallenge_Result
//{
// public byte m_iCommand = (byte)RealmListOpCode.CMSG_AUTH_CHALLENGE_RESULT; // 0x00 CMD_AUTH_LOGON_CHALLENGE
// public byte m_iError = 0; // 0 - ok
// public byte m_iUnk = 0; // 0x00
// public byte[] m_iB = new byte[32];
// public byte m_iGLen = 1; // 0x01
// public byte[] m_iG = new byte[1];
// public byte m_iNLen = 32; // 0x20
// public byte[] m_iN = new byte[32];
// public byte[] m_iS = new byte[32];
// public byte[] m_iUnk2 = new byte[16];
// public byte m_iUnk3 = 0;
//}
/// <summary>
/// 等于 AuthLogonChallenge_Result 结构
/// </summary>
public Auth_AuthChallengeResult( SecureRemotePassword srp )
: base( (long)AuthOpCode.CMSG_AUTH_CHALLENGE_RESULT, 0 )
{
WriterStream.Write( (byte)AuthOpCode.CMSG_AUTH_CHALLENGE_RESULT );
WriterStream.Write( (byte)LogineErrorInfo.LOGIN_SUCCESS );
//////////////////////////////////////////////////////////////////////////
WriterStream.Write( (byte)0 );
WriterStream.Write( srp.PublicEphemeralValueB.GetBytes( 32 ), 0, 32 );
WriterStream.Write( (byte)1 );
WriterStream.Write( srp.Generator.GetBytes( 1 ), 0, 1 );
WriterStream.Write( (byte)32 );
WriterStream.Write( srp.Modulus.GetBytes( 32 ), 0, 32 );
WriterStream.Write( srp.Salt.GetBytes( 32 ), 0, 32 );
BigInteger unknown = new BigInteger();
unknown.GenRandomBits( 128 /* 16 * 8 */ , new Random( 10 ) );/* 随机数 16字节 */
WriterStream.Write( unknown.GetBytes( 16 ), 0, 16 );
WriterStream.Write( (byte)0 );
}
示例3: GenCoPrime
//***********************************************************************
// Generates a random number with the specified number of bits such
// that gcd(number, this) = 1
//***********************************************************************
public BigInteger GenCoPrime(int bits, Random rand)
{
bool done = false;
BigInteger result = new BigInteger();
while(!done)
{
result.GenRandomBits(bits, rand);
//Console.WriteLine(result.ToString(16));
// gcd test
BigInteger g = result.Gcd(this);
if(g.dataLength == 1 && g.data[0] == 1)
done = true;
}
return result;
}
示例4: GenPseudoPrime
//***********************************************************************
// Generates a positive BigInteger that is probably prime.
//***********************************************************************
public static BigInteger GenPseudoPrime(int bits, int confidence, Random rand)
{
BigInteger result = new BigInteger();
bool done = false;
while(!done)
{
result.GenRandomBits(bits, rand);
result.data[0] |= 0x01; // make it odd
// prime test
done = result.IsProbablePrime(confidence);
}
return result;
}
示例5: SolovayStrassenTest
//***********************************************************************
// Probabilistic prime test based on Solovay-Strassen (Euler Criterion)
//
// p is probably prime if for any a < p (a is not multiple of p),
// a^((p-1)/2) mod p = J(a, p)
//
// where J is the Jacobi symbol.
//
// Otherwise, p is composite.
//
// Returns
// -------
// True if "this" is a Euler pseudoprime to randomly chosen
// bases. The number of chosen bases is given by the "confidence"
// parameter.
//
// False if "this" is definitely NOT prime.
//
//***********************************************************************
public bool SolovayStrassenTest(int confidence)
{
BigInteger thisVal;
if((this.data[MaxLength-1] & 0x80000000) != 0) // negative
thisVal = -this;
else
thisVal = this;
if(thisVal.dataLength == 1)
{
// test small numbers
if(thisVal.data[0] == 0 || thisVal.data[0] == 1)
return false;
else if(thisVal.data[0] == 2 || thisVal.data[0] == 3)
return true;
}
if((thisVal.data[0] & 0x1) == 0) // even numbers
return false;
int bits = thisVal.bitCount();
BigInteger a = new BigInteger();
BigInteger p_sub1 = thisVal - 1;
BigInteger p_sub1_shift = p_sub1 >> 1;
Random rand = new Random();
for(int round = 0; round < confidence; round++)
{
bool done = false;
while(!done) // generate a < n
{
int testBits = 0;
// make sure "a" has at least 2 bits
while(testBits < 2)
testBits = (int)(rand.NextDouble() * bits);
a.GenRandomBits(testBits, rand);
int byteLen = a.dataLength;
// make sure "a" is not 0
if(byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
done = true;
}
// check whether a factor exists (fix for version 1.03)
BigInteger gcdTest = a.Gcd(thisVal);
if(gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
return false;
// calculate a^((p-1)/2) mod p
BigInteger expResult = a.ModPow(p_sub1_shift, thisVal);
if(expResult == p_sub1)
expResult = -1;
// calculate Jacobi symbol
BigInteger jacob = Jacobi(a, thisVal);
//Console.WriteLine("a = " + a.ToString(10) + " b = " + thisVal.ToString(10));
//Console.WriteLine("expResult = " + expResult.ToString(10) + " Jacob = " + jacob.ToString(10));
// if they are different then it is not prime
if(expResult != jacob)
return false;
}
return true;
}
示例6: RabinMillerTest
//***********************************************************************
// Probabilistic prime test based on Rabin-Miller's
//
// for any p > 0 with p - 1 = 2^s * t
//
// p is probably prime (strong pseudoprime) if for any a < p,
// 1) a^t mod p = 1 or
// 2) a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
//
// Otherwise, p is composite.
//
// Returns
// -------
// True if "this" is a strong pseudoprime to randomly chosen
// bases. The number of chosen bases is given by the "confidence"
// parameter.
//
// False if "this" is definitely NOT prime.
//
//***********************************************************************
public bool RabinMillerTest(int confidence)
{
BigInteger thisVal;
if((this.data[MaxLength-1] & 0x80000000) != 0) // negative
thisVal = -this;
else
thisVal = this;
if(thisVal.dataLength == 1)
{
// test small numbers
if(thisVal.data[0] == 0 || thisVal.data[0] == 1)
return false;
else if(thisVal.data[0] == 2 || thisVal.data[0] == 3)
return true;
}
if((thisVal.data[0] & 0x1) == 0) // even numbers
return false;
// calculate values of s and t
BigInteger p_sub1 = thisVal - (new BigInteger(1));
int s = 0;
for(int index = 0; index < p_sub1.dataLength; index++)
{
uint mask = 0x01;
for(int i = 0; i < 32; i++)
{
if((p_sub1.data[index] & mask) != 0)
{
index = p_sub1.dataLength; // to break the outer loop
break;
}
mask <<= 1;
s++;
}
}
BigInteger t = p_sub1 >> s;
int bits = thisVal.bitCount();
BigInteger a = new BigInteger();
Random rand = new Random();
for(int round = 0; round < confidence; round++)
{
bool done = false;
while(!done) // generate a < n
{
int testBits = 0;
// make sure "a" has at least 2 bits
while(testBits < 2)
testBits = (int)(rand.NextDouble() * bits);
a.GenRandomBits(testBits, rand);
int byteLen = a.dataLength;
// make sure "a" is not 0
if(byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
done = true;
}
// check whether a factor exists (fix for version 1.03)
BigInteger gcdTest = a.Gcd(thisVal);
if(gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
return false;
BigInteger b = a.ModPow(t, thisVal);
/*
Console.WriteLine("a = " + a.ToString(10));
Console.WriteLine("b = " + b.ToString(10));
Console.WriteLine("t = " + t.ToString(10));
//.........这里部分代码省略.........
示例7: FermatLittleTest
//***********************************************************************
// Probabilistic prime test based on Fermat's little theorem
//
// for any a < p (p does not divide a) if
// a^(p-1) mod p != 1 then p is not prime.
//
// Otherwise, p is probably prime (pseudoprime to the chosen base).
//
// Returns
// -------
// True if "this" is a pseudoprime to randomly chosen
// bases. The number of chosen bases is given by the "confidence"
// parameter.
//
// False if "this" is definitely NOT prime.
//
// Note - this method is fast but fails for Carmichael numbers except
// when the randomly chosen base is a factor of the number.
//
//***********************************************************************
public bool FermatLittleTest(int confidence)
{
BigInteger thisVal;
if((this.data[MaxLength-1] & 0x80000000) != 0) // negative
thisVal = -this;
else
thisVal = this;
if(thisVal.dataLength == 1)
{
// test small numbers
if(thisVal.data[0] == 0 || thisVal.data[0] == 1)
return false;
else if(thisVal.data[0] == 2 || thisVal.data[0] == 3)
return true;
}
if((thisVal.data[0] & 0x1) == 0) // even numbers
return false;
int bits = thisVal.bitCount();
BigInteger a = new BigInteger();
BigInteger p_sub1 = thisVal - (new BigInteger(1));
Random rand = new Random();
for(int round = 0; round < confidence; round++)
{
bool done = false;
while(!done) // generate a < n
{
int testBits = 0;
// make sure "a" has at least 2 bits
while(testBits < 2)
testBits = (int)(rand.NextDouble() * bits);
a.GenRandomBits(testBits, rand);
int byteLen = a.dataLength;
// make sure "a" is not 0
if(byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
done = true;
}
// check whether a factor exists (fix for version 1.03)
BigInteger gcdTest = a.Gcd(thisVal);
if(gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
return false;
// calculate a^(p-1) mod p
BigInteger expResult = a.ModPow(p_sub1, thisVal);
int resultLen = expResult.dataLength;
// is NOT prime is a^(p-1) mod p != 1
if(resultLen > 1 || (resultLen == 1 && expResult.data[0] != 1))
{
//Console.WriteLine("a = " + a.ToString());
return false;
}
}
return true;
}