当前位置: 首页>>代码示例>>C#>>正文


C# BigInteger.Copy方法代码示例

本文整理汇总了C#中BigInteger.Copy方法的典型用法代码示例。如果您正苦于以下问题:C# BigInteger.Copy方法的具体用法?C# BigInteger.Copy怎么用?C# BigInteger.Copy使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在BigInteger的用法示例。


在下文中一共展示了BigInteger.Copy方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: NextProbablePrime

        /**
         * It uses the sieve of Eratosthenes to discard several composite numbers in
         * some appropriate range (at the moment {@code [this, this + 1024]}). After
         * this process it applies the Miller-Rabin test to the numbers that were
         * not discarded in the sieve.
         *
         * @see BigInteger#nextProbablePrime()
         * @see #millerRabin(BigInteger, int)
         */
        public static BigInteger NextProbablePrime(BigInteger n)
        {
            // PRE: n >= 0
            int i, j;
            int certainty;
            int gapSize = 1024; // for searching of the next probable prime number
            int[] modules = new int[primes.Length];
            bool[] isDivisible = new bool[gapSize];
            BigInteger startPoint;
            BigInteger probPrime;
            // If n < "last prime of table" searches next prime in the table
            if ((n.numberLength == 1) && (n.Digits[0] >= 0)
                    && (n.Digits[0] < primes[primes.Length - 1])) {
                for (i = 0; n.Digits[0] >= primes[i]; i++) {
                    ;
                }
                return BIprimes[i];
            }
            /*
             * Creates a "N" enough big to hold the next probable prime Note that: N <
             * "next prime" < 2*N
             */
            startPoint = new BigInteger(1, n.numberLength,
                    new int[n.numberLength + 1]);
            Array.Copy(n.Digits, 0, startPoint.Digits, 0, n.numberLength);
            // To fix N to the "next odd number"
            if (n.TestBit(0)) {
                Elementary.inplaceAdd(startPoint, 2);
            } else {
                startPoint.Digits[0] |= 1;
            }
            // To set the improved certainly of Miller-Rabin
            j = startPoint.BitLength;
            for (certainty = 2; j < BITS[certainty]; certainty++) {
                ;
            }
            // To calculate modules: N mod p1, N mod p2, ... for first primes.
            for (i = 0; i < primes.Length; i++) {
                modules[i] = Division.Remainder(startPoint, primes[i]) - gapSize;
            }
            while (true) {
                // At this point, all numbers in the gap are initialized as
                // probably primes
                // Arrays.fill(isDivisible, false);
                for (int k = 0; k < isDivisible.Length; k++)
                    isDivisible[k] = false;

                // To discard multiples of first primes
                for (i = 0; i < primes.Length; i++) {
                    modules[i] = (modules[i] + gapSize) % primes[i];
                    j = (modules[i] == 0) ? 0 : (primes[i] - modules[i]);
                    for (; j < gapSize; j += primes[i]) {
                        isDivisible[j] = true;
                    }
                }
                // To execute Miller-Rabin for non-divisible numbers by all first
                // primes
                for (j = 0; j < gapSize; j++) {
                    if (!isDivisible[j]) {
                        probPrime = startPoint.Copy();
                        Elementary.inplaceAdd(probPrime, j);

                        if (MillerRabin(probPrime, certainty)) {
                            return probPrime;
                        }
                    }
                }
                Elementary.inplaceAdd(startPoint, gapSize);
            }
        }
开发者ID:tupunco,项目名称:deveel-math,代码行数:79,代码来源:Primality.cs

示例2: ModInverseMontgomery

        /// <summary>
        /// Calculates x.modInverse(p) Based on: Savas, E; Koc, C "The Montgomery Modular Inverse - Revised"
        /// </summary>
        /// 
        /// <param name="X">BigInteger X</param>
        /// <param name="P">BigInteger P</param>
        /// 
        /// <returns>Returns <c>1/X Mod M</c></returns>
        internal static BigInteger ModInverseMontgomery(BigInteger X, BigInteger P)
        {
            // ZERO hasn't inverse
            if (X._sign == 0)
                throw new ArithmeticException("BigInteger not invertible!");

            // montgomery inverse require even modulo
            if (!P.TestBit(0))
                return ModInverseLorencz(X, P);

            int m = P._numberLength * 32;
            // PRE: a \in [1, p - 1]
            BigInteger u, v, r, s;
            u = P.Copy();  // make copy to use inplace method
            v = X.Copy();

            int max = System.Math.Max(v._numberLength, u._numberLength);
            r = new BigInteger(1, 1, new int[max + 1]);
            s = new BigInteger(1, 1, new int[max + 1]);
            s._digits[0] = 1;

            int k = 0;
            int lsbu = u.LowestSetBit;
            int lsbv = v.LowestSetBit;
            int toShift;

            if (lsbu > lsbv)
            {
                BitLevel.InplaceShiftRight(u, lsbu);
                BitLevel.InplaceShiftRight(v, lsbv);
                BitLevel.InplaceShiftLeft(r, lsbv);
                k += lsbu - lsbv;
            }
            else
            {
                BitLevel.InplaceShiftRight(u, lsbu);
                BitLevel.InplaceShiftRight(v, lsbv);
                BitLevel.InplaceShiftLeft(s, lsbu);
                k += lsbv - lsbu;
            }

            r._sign = 1;
            while (v.Signum() > 0)
            {
                // INV v >= 0, u >= 0, v odd, u odd (except last iteration when v is even (0))

                while (u.CompareTo(v) > BigInteger.EQUALS)
                {
                    Elementary.InplaceSubtract(u, v);
                    toShift = u.LowestSetBit;
                    BitLevel.InplaceShiftRight(u, toShift);
                    Elementary.InplaceAdd(r, s);
                    BitLevel.InplaceShiftLeft(s, toShift);
                    k += toShift;
                }

                while (u.CompareTo(v) <= BigInteger.EQUALS)
                {
                    Elementary.InplaceSubtract(v, u);

                    if (v.Signum() == 0)
                        break;

                    toShift = v.LowestSetBit;
                    BitLevel.InplaceShiftRight(v, toShift);
                    Elementary.InplaceAdd(s, r);
                    BitLevel.InplaceShiftLeft(r, toShift);
                    k += toShift;
                }
            }

            // in u is stored the gcd
            if (!u.IsOne())
                throw new ArithmeticException("BigInteger not invertible.");

            if (r.CompareTo(P) >= BigInteger.EQUALS)
                Elementary.InplaceSubtract(r, P);

            r = P.Subtract(r);

            // Have pair: ((BigInteger)r, (Integer)k) where r == a^(-1) * 2^k mod (module)		
            int n1 = CalcN(P);
            if (k > m)
            {
                r = MonPro(r, BigInteger.One, P, n1);
                k = k - m;
            }

            r = MonPro(r, BigInteger.GetPowerOfTwo(m - k), P, n1);

            return r;
        }
开发者ID:DeadlyEmbrace,项目名称:NTRU-NET,代码行数:100,代码来源:Division.cs

示例3: Pow2ModPow

        private static BigInteger Pow2ModPow(BigInteger X, BigInteger Y, int N)
        {
            // PRE: (base > 0), (exponent > 0) and (j > 0)
            BigInteger res = BigInteger.One;
            BigInteger e = Y.Copy();
            BigInteger baseMod2toN = X.Copy();
            BigInteger res2;

            // If 'base' is odd then it's coprime with 2^j and phi(2^j) = 2^(j-1);
            // so we can reduce reduce the exponent (mod 2^(j-1)).
            if (X.TestBit(0))
                InplaceModPow2(e, N - 1);
            
            InplaceModPow2(baseMod2toN, N);

            for (int i = e.BitLength - 1; i >= 0; i--)
            {
                res2 = res.Copy();
                InplaceModPow2(res2, N);
                res = res.Multiply(res2);
                if (BitLevel.TestBit(e, i))
                {
                    res = res.Multiply(baseMod2toN);
                    InplaceModPow2(res, N);
                }
            }
            InplaceModPow2(res, N);

            return res;
        }
开发者ID:DeadlyEmbrace,项目名称:NTRU-NET,代码行数:30,代码来源:Division.cs

示例4: ModInverseMontgomery

        /**
         * Calculates a.modInverse(p) Based on: Savas, E; Koc, C "The Montgomery Modular
         * Inverse - Revised"
         */
        public static BigInteger ModInverseMontgomery(BigInteger a, BigInteger p)
        {
            if (a.Sign == 0) {
                // ZERO hasn't inverse
                // math.19: BigInteger not invertible
                throw new ArithmeticException(Messages.math19);
            }

            if (!p.TestBit(0)) {
                // montgomery inverse require even modulo
                return ModInverseLorencz(a, p);
            }

            int m = p.numberLength*32;
            // PRE: a \in [1, p - 1]
            BigInteger u, v, r, s;
            u = p.Copy(); // make copy to use inplace method
            v = a.Copy();
            int max = System.Math.Max(v.numberLength, u.numberLength);
            r = new BigInteger(1, 1, new int[max + 1]);
            s = new BigInteger(1, 1, new int[max + 1]);
            s.Digits[0] = 1;
            // s == 1 && v == 0

            int k = 0;

            int lsbu = u.LowestSetBit;
            int lsbv = v.LowestSetBit;
            int toShift;

            if (lsbu > lsbv) {
                BitLevel.InplaceShiftRight(u, lsbu);
                BitLevel.InplaceShiftRight(v, lsbv);
                BitLevel.InplaceShiftLeft(r, lsbv);
                k += lsbu - lsbv;
            } else {
                BitLevel.InplaceShiftRight(u, lsbu);
                BitLevel.InplaceShiftRight(v, lsbv);
                BitLevel.InplaceShiftLeft(s, lsbu);
                k += lsbv - lsbu;
            }

            r.Sign = 1;
            while (v.Sign > 0) {
                // INV v >= 0, u >= 0, v odd, u odd (except last iteration when v is even (0))

                while (u.CompareTo(v) > BigInteger.EQUALS) {
                    Elementary.inplaceSubtract(u, v);
                    toShift = u.LowestSetBit;
                    BitLevel.InplaceShiftRight(u, toShift);
                    Elementary.inplaceAdd(r, s);
                    BitLevel.InplaceShiftLeft(s, toShift);
                    k += toShift;
                }

                while (u.CompareTo(v) <= BigInteger.EQUALS) {
                    Elementary.inplaceSubtract(v, u);
                    if (v.Sign == 0)
                        break;
                    toShift = v.LowestSetBit;
                    BitLevel.InplaceShiftRight(v, toShift);
                    Elementary.inplaceAdd(s, r);
                    BitLevel.InplaceShiftLeft(r, toShift);
                    k += toShift;
                }
            }
            if (!u.IsOne) {
                // in u is stored the gcd
                // math.19: BigInteger not invertible.
                throw new ArithmeticException(Messages.math19);
            }
            if (r.CompareTo(p) >= BigInteger.EQUALS)
                Elementary.inplaceSubtract(r, p);

            r = p.Subtract(r);

            // Have pair: ((BigInteger)r, (Integer)k) where r == a^(-1) * 2^k mod (module)
            int n1 = CalcN(p);
            if (k > m) {
                r = MonPro(r, BigInteger.One, p, n1);
                k = k - m;
            }

            r = MonPro(r, BigInteger.GetPowerOfTwo(m - k), p, n1);
            return r;
        }
开发者ID:tupunco,项目名称:deveel-math,代码行数:90,代码来源:Division.cs


注:本文中的BigInteger.Copy方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。