本文整理汇总了C#中BigInteger.BitCount方法的典型用法代码示例。如果您正苦于以下问题:C# BigInteger.BitCount方法的具体用法?C# BigInteger.BitCount怎么用?C# BigInteger.BitCount使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类BigInteger
的用法示例。
在下文中一共展示了BigInteger.BitCount方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: RabinMillerTest
/// <summary>
/// Probabilistic prime test based on Rabin-Miller's test
/// </summary>
/// <param name="n" type="BigInteger.BigInteger">
/// <para>
/// The number to test.
/// </para>
/// </param>
/// <param name="confidence" type="int">
/// <para>
/// The number of chosen bases. The test has at least a
/// 1/4^confidence chance of falsely returning True.
/// </para>
/// </param>
/// <returns>
/// <para>
/// True if "this" is a strong pseudoprime to randomly chosen bases.
/// </para>
/// <para>
/// False if "this" is definitely NOT prime.
/// </para>
/// </returns>
public static bool RabinMillerTest(BigInteger n, ConfidenceFactor confidence)
{
int bits = n.BitCount ();
int t = GetSPPRounds (bits, confidence);
// n - 1 == 2^s * r, r is odd
BigInteger n_minus_1 = n - 1;
int s = n_minus_1.LowestSetBit ();
BigInteger r = n_minus_1 >> s;
BigInteger.ModulusRing mr = new BigInteger.ModulusRing (n);
// Applying optimization from HAC section 4.50 (base == 2)
// not a really random base but an interesting (and speedy) one
BigInteger y = null;
// FIXME - optimization disable for small primes due to bug #81857
if (n.BitCount () > 100)
y = mr.Pow (2, r);
// still here ? start at round 1 (round 0 was a == 2)
for (int round = 0; round < t; round++) {
if ((round > 0) || (y == null)) {
BigInteger a = null;
// check for 2 <= a <= n - 2
// ...but we already did a == 2 previously as an optimization
do {
a = BigInteger.GenerateRandom (bits);
} while ((a <= 2) && (a >= n_minus_1));
y = mr.Pow (a, r);
}
if (y == 1)
continue;
for (int j = 0; ((j < s) && (y != n_minus_1)); j++) {
y = mr.Pow (y, 2);
if (y == 1)
return false;
}
if (y != n_minus_1)
return false;
}
return true;
}
示例2: GetSPPRounds
private static int GetSPPRounds(BigInteger bi, ConfidenceFactor confidence)
{
int bc = bi.BitCount();
int Rounds;
// Data from HAC, 4.49
if (bc <= 100) Rounds = 27;
else if (bc <= 150) Rounds = 18;
else if (bc <= 200) Rounds = 15;
else if (bc <= 250) Rounds = 12;
else if (bc <= 300) Rounds = 9;
else if (bc <= 350) Rounds = 8;
else if (bc <= 400) Rounds = 7;
else if (bc <= 500) Rounds = 6;
else if (bc <= 600) Rounds = 5;
else if (bc <= 800) Rounds = 4;
else if (bc <= 1250) Rounds = 3;
else Rounds = 2;
switch (confidence)
{
case ConfidenceFactor.ExtraLow:
Rounds >>= 2;
return Rounds != 0 ? Rounds : 1;
case ConfidenceFactor.Low:
Rounds >>= 1;
return Rounds != 0 ? Rounds : 1;
case ConfidenceFactor.Medium:
return Rounds;
case ConfidenceFactor.High:
return Rounds << 1;
case ConfidenceFactor.ExtraHigh:
return Rounds << 2;
case ConfidenceFactor.Provable:
throw new Exception("The Rabin-Miller test can not be executed in a way such that its results are provable");
default:
throw new ArgumentOutOfRangeException("confidence");
}
}
示例3: Test
public static bool Test (BigInteger n, ConfidenceFactor confidence)
{
// Rabin-Miller fails with smaller primes (at least with our BigInteger code)
if (n.BitCount () < 33)
return SmallPrimeSppTest (n, confidence);
else
return RabinMillerTest (n, confidence);
}
示例4: RabinMillerTest
/// <summary>
/// Probabilistic prime test based on Rabin-Miller's test
/// </summary>
/// <param name="bi" type="BigInteger.BigInteger">
/// <para>
/// The number to test.
/// </para>
/// </param>
/// <param name="confidence" type="int">
/// <para>
/// The number of chosen bases. The test has at least a
/// 1/4^confidence chance of falsely returning True.
/// </para>
/// </param>
/// <returns>
/// <para>
/// True if "this" is a strong pseudoprime to randomly chosen bases.
/// </para>
/// <para>
/// False if "this" is definitely NOT prime.
/// </para>
/// </returns>
public static bool RabinMillerTest (BigInteger bi, ConfidenceFactor confidence)
{
int Rounds = GetSPPRounds (bi, confidence);
// calculate values of s and t
BigInteger p_sub1 = bi - 1;
int s = p_sub1.LowestSetBit ();
BigInteger t = p_sub1 >> s;
int bits = bi.BitCount ();
BigInteger a = null;
BigInteger.ModulusRing mr = new BigInteger.ModulusRing (bi);
// Applying optimization from HAC section 4.50 (base == 2)
// not a really random base but an interesting (and speedy) one
BigInteger b = mr.Pow (2, t);
if (b != 1) {
bool result = false;
for (int j=0; j < s; j++) {
if (b == p_sub1) { // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
result = true;
break;
}
b = (b * b) % bi;
}
if (!result)
return false;
}
// still here ? start at round 1 (round 0 was a == 2)
for (int round = 1; round < Rounds; round++) {
while (true) { // generate a < n
a = BigInteger.GenerateRandom (bits);
// make sure "a" is not 0 (and not 2 as we have already tested that)
if (a > 2 && a < bi)
break;
}
if (a.GCD (bi) != 1)
return false;
b = mr.Pow (a, t);
if (b == 1)
continue; // a^t mod p = 1
bool result = false;
for (int j = 0; j < s; j++) {
if (b == p_sub1) { // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
result = true;
break;
}
b = (b * b) % bi;
}
if (!result)
return false;
}
return true;
}