当前位置: 首页>>代码示例>>C#>>正文


C# BigInteger.ToInt64方法代码示例

本文整理汇总了C#中BigInteger.ToInt64方法的典型用法代码示例。如果您正苦于以下问题:C# BigInteger.ToInt64方法的具体用法?C# BigInteger.ToInt64怎么用?C# BigInteger.ToInt64使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在BigInteger的用法示例。


在下文中一共展示了BigInteger.ToInt64方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: BigInteger2Double

 /** @see BigInteger#ToDouble() */
 public static double BigInteger2Double(BigInteger val)
 {
     // val.bitLength() < 64
     if ((val.numberLength < 2)
             || ((val.numberLength == 2) && (val.Digits[1] > 0))) {
         return val.ToInt64();
     }
     // val.bitLength() >= 33 * 32 > 1024
     if (val.numberLength > 32) {
         return ((val.Sign > 0) ? Double.PositiveInfinity
                 : Double.NegativeInfinity);
     }
     int bitLen = val.Abs().BitLength;
     long exponent = bitLen - 1;
     int delta = bitLen - 54;
     // We need 54 top bits from this, the 53th bit is always 1 in lVal.
     long lVal = val.Abs().ShiftRight(delta).ToInt64();
     /*
      * Take 53 bits from lVal to mantissa. The least significant bit is
      * needed for rounding.
      */
     long mantissa = lVal & 0x1FFFFFFFFFFFFFL;
     if (exponent == 1023) {
         if (mantissa == 0X1FFFFFFFFFFFFFL) {
             return ((val.Sign > 0) ? Double.PositiveInfinity
                     : Double.NegativeInfinity);
         }
         if (mantissa == 0x1FFFFFFFFFFFFEL) {
             return ((val.Sign > 0) ? Double.MaxValue : -Double.MaxValue);
         }
     }
     // Round the mantissa
     if (((mantissa & 1) == 1)
             && (((mantissa & 2) == 2) || BitLevel.NonZeroDroppedBits(delta,
                     val.Digits))) {
         mantissa += 2;
     }
     mantissa >>= 1; // drop the rounding bit
     // long resSign = (val.sign < 0) ? 0x8000000000000000L : 0;
     long resSign = (val.Sign < 0) ? Int64.MinValue : 0;
     exponent = ((1023 + exponent) << 52) & 0x7FF0000000000000L;
     long result = resSign | exponent | mantissa;
     return BitConverter.Int64BitsToDouble(result);
 }
开发者ID:tupunco,项目名称:deveel-math,代码行数:45,代码来源:Conversion.cs

示例2: GcdBinary

        /// <summary>
        /// Return the greatest common divisor of X and Y
        /// </summary>
        /// 
        /// <param name="X">Operand 1, must be greater than zero</param>
        /// <param name="Y">Operand 2, must be greater than zero</param>
        /// 
        /// <returns>Returns <c>GCD(X, Y)</c></returns>
        internal static BigInteger GcdBinary(BigInteger X, BigInteger Y)
        {
            // Divide both number the maximal possible times by 2 without rounding * gcd(2*a, 2*b) = 2 * gcd(a,b)
            int lsb1 = X.LowestSetBit;
            int lsb2 = Y.LowestSetBit;
            int pow2Count = System.Math.Min(lsb1, lsb2);

            BitLevel.InplaceShiftRight(X, lsb1);
            BitLevel.InplaceShiftRight(Y, lsb2);
            BigInteger swap;

            // I want op2 > op1
            if (X.CompareTo(Y) == BigInteger.GREATER)
            {
                swap = X;
                X = Y;
                Y = swap;
            }

            do
            { // INV: op2 >= op1 && both are odd unless op1 = 0

                // Optimization for small operands (op2.bitLength() < 64) implies by INV (op1.bitLength() < 64)
                if ((Y._numberLength == 1) || ((Y._numberLength == 2) && (Y._digits[1] > 0)))
                {
                    Y = BigInteger.ValueOf(Division.GcdBinary(X.ToInt64(), Y.ToInt64()));
                    break;
                }

                // Implements one step of the Euclidean algorithm
                // To reduce one operand if it's much smaller than the other one
                if (Y._numberLength > X._numberLength * 1.2)
                {
                    Y = Y.Remainder(X);

                    if (Y.Signum() != 0)
                        BitLevel.InplaceShiftRight(Y, Y.LowestSetBit);
                }
                else
                {

                    // Use Knuth's algorithm of successive subtract and shifting
                    do
                    {
                        Elementary.InplaceSubtract(Y, X); // both are odd
                        BitLevel.InplaceShiftRight(Y, Y.LowestSetBit); // op2 is even
                    } while (Y.CompareTo(X) >= BigInteger.EQUALS);
                }
                // now op1 >= op2
                swap = Y;
                Y = X;
                X = swap;
            } while (X._sign != 0);

            return Y.ShiftLeft(pow2Count);
        }
开发者ID:DeadlyEmbrace,项目名称:NTRU-NET,代码行数:64,代码来源:Division.cs

示例3: NextLong

        /// <summary>
        /// Get a pseudo random 64bit integer
        /// </summary>
        /// 
        /// <returns>Random Int64</returns>
        public long NextLong()
        {
            // Xi+1 = (X pow 2) mod N
            _X = _X.Multiply(_X).Mod(_N);

            return _X.ToInt64();
        }
开发者ID:modulexcite,项目名称:CEX,代码行数:12,代码来源:BBSG.cs

示例4: GcdBinary

        /**
         * @param m a positive modulus
         * Return the greatest common divisor of op1 and op2,
         *
         * @param op1
         *            must be greater than zero
         * @param op2
         *            must be greater than zero
         * @see BigInteger#gcd(BigInteger)
         * @return {@code GCD(op1, op2)}
         */
        public static BigInteger GcdBinary(BigInteger op1, BigInteger op2)
        {
            // PRE: (op1 > 0) and (op2 > 0)

            /*
             * Divide both number the maximal possible times by 2 without rounding
                     * gcd(2*a, 2*b) = 2 * gcd(a,b)
             */
            int lsb1 = op1.LowestSetBit;
            int lsb2 = op2.LowestSetBit;
            int pow2Count = System.Math.Min(lsb1, lsb2);

            BitLevel.InplaceShiftRight(op1, lsb1);
            BitLevel.InplaceShiftRight(op2, lsb2);

            BigInteger swap;
            // I want op2 > op1
            if (op1.CompareTo(op2) == BigInteger.GREATER) {
                swap = op1;
                op1 = op2;
                op2 = swap;
            }

            do {
                // INV: op2 >= op1 && both are odd unless op1 = 0

                // Optimization for small operands
                // (op2.bitLength() < 64) implies by INV (op1.bitLength() < 64)
                if ((op2.numberLength == 1)
                    || ((op2.numberLength == 2) && (op2.Digits[1] > 0))) {
                    op2 = BigInteger.ValueOf(Division.GcdBinary(op1.ToInt64(),
                        op2.ToInt64()));
                    break;
                }

                // Implements one step of the Euclidean algorithm
                // To reduce one operand if it's much smaller than the other one
                if (op2.numberLength > op1.numberLength*1.2) {
                    op2 = op2.Remainder(op1);
                    if (op2.Sign != 0)
                        BitLevel.InplaceShiftRight(op2, op2.LowestSetBit);
                } else {
                    // Use Knuth's algorithm of successive subtract and shifting
                    do {
                        Elementary.inplaceSubtract(op2, op1); // both are odd
                        BitLevel.InplaceShiftRight(op2, op2.LowestSetBit); // op2 is even
                    } while (op2.CompareTo(op1) >= BigInteger.EQUALS);
                }
                // now op1 >= op2
                swap = op2;
                op2 = op1;
                op1 = swap;
            } while (op1.Sign != 0);
            return op2.ShiftLeft(pow2Count);
        }
开发者ID:tupunco,项目名称:deveel-math,代码行数:66,代码来源:Division.cs


注:本文中的BigInteger.ToInt64方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。