本文整理汇总了C++中PID::compute方法的典型用法代码示例。如果您正苦于以下问题:C++ PID::compute方法的具体用法?C++ PID::compute怎么用?C++ PID::compute使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类PID
的用法示例。
在下文中一共展示了PID::compute方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: main
int main()
{
Network network;
Accelerometer imu;
imu.bypassDrift();
motors.setToZero();
signal(SIGABRT, sigHandler);
signal(SIGINT, sigHandler);
signal(SIGKILL, sigHandler);
signal(SIGQUIT, sigHandler);
signal(SIGTERM, sigHandler);
float ypr[3];
while(true) {
if(imu.getFIFOCount() > 42) {
imu.getYawPitchRoll(ypr);
float p_computed = p_pid.compute(ypr[1], p_target), r_computed = r_pid.compute(ypr[2], r_target);
motors.setSpeed(MOTOR_FL, throttle + r_computed - p_computed);
motors.setSpeed(MOTOR_BL, throttle + r_computed + p_computed);
motors.setSpeed(MOTOR_FR, throttle - r_computed - p_computed);
motors.setSpeed(MOTOR_BR, throttle - r_computed + p_computed);
network.send(SET_MEASURED_VALUES, ypr, sizeof(float)*3, false);
}
}
exit(EXIT_SUCCESS);
}
示例2: internalStateLoop
/*Each time this is called, this pets the watchdog and computes how much the heater must be powered in order to maintain
the desired temperature. If you every want to change the internal workings of the system, this is the function where you put that
code*/
void internalStateLoop(const void *context) {
//Pet the watchdog
W.Pet();
controller.setProcessValue(internal_temp); //We won't actually read from the TMP 102.h, we'll use the most recent internal temp variable (global).
// Set the new output.
heater = controller.compute();
printf("What should the output be? %f\n", controller.compute());
// Now check for termination conditions
// 1. If the GPS lat,lon exceed the permitted bounds, cut down.
// 2. If you receive an iridum command telling you to end the flight, cut down.
// 3. If you've not received an Iridium command in a while (5 hrs), cut down.
}
示例3: update_speed_and_heading
void update_speed_and_heading()
{
if(distance_to_current_nav(degToRad((double)NMEA::getLatitude()), degToRad((double)NMEA::getLongitude())) < WAYPOINT_RADIUS)
go_next_nav();
nav_list_t * current_nav = get_current_nav();
bearing = compass.getHeadingXYDeg();
heading = startHeading(degToRad(NMEA::getLatitude()), degToRad(NMEA::getLongitude()), current_nav->latitude, current_nav->longitude)*(180.0/M_PI);
headingPid.setProcessValue(heading_delta(heading,bearing));
speedOverGroundPid.setProcessValue(NMEA::getSpeed());
#ifdef SPEED_PID_CALIBRATION
bearingCompensation = 0;
#else
bearingCompensation = headingPid.compute();
#endif
#ifdef BEARING_PID_CALIBRATION
speedOverGroundCompensation = 0;
#else
speedOverGroundCompensation = speedOverGroundPid.compute();
#endif
leftThrottle = ((speedOverGroundCompensation - bearingCompensation) < THROTTLE_LIMIT) ? (speedOverGroundCompensation - bearingCompensation) : THROTTLE_LIMIT;
rightThrottle = ((speedOverGroundCompensation + bearingCompensation) < THROTTLE_LIMIT) ? (speedOverGroundCompensation + bearingCompensation) : THROTTLE_LIMIT;
}
示例4:
void RosAriaNode::Mas1ToSla_cb( const geometry_msgs::PointStampedConstPtr &msg)
{
// Master 1 Position
Vm1 = msg->point.x;
Xm1 = Xm1 + Vm1;
// Master force
Fk1 = msg->point.y;
// Master 1 Positive Energy
mst1_slv_cmd_P = msg->point.z;
Xsd = Scale *(alpha*Xm1 + (1-alpha)*Xm2);// design position
Xsprv = Xs;
Position = robot->getPose();
Xs = Position.getX();
delta = Xs - Xsprv;
Vs = PosController.compute(Xsd,Xs);
// Fs - Sum
Fs = K_force*(Xsd - Xs);
Fs1 = alpha*Fs;
Fs2 = (1-alpha)*Fs;
/*
* Master 1 - Slave Channel
*/
// Calculate Negative Energy and dissipate Active energy
if (Vm1*Fs1>0)
{
mst1_slv_cmd_N -=Vm1*Fs1;
}
else
{
//Do nothing
}
// PC:
if (mst1_slv_cmd_N+mst1_slv_cmd_P<0)
{
mst1_slv_cmd_N +=Vm1*Fs1; // backward 1 step
Xm1 = Xm1 - Vm1; // backward 1 step
// Modify Vm1
if (Fs1*Fs1>0)
Vm1 = (mst1_slv_cmd_N+mst1_slv_cmd_P)/Fs1;
else
Vm1 = 0;
//Update
Xm1 = Xm1 + Vm1;
Xsd = Scale *(alpha*Xm1 + (1-alpha)*Xm2);// design position
Vs = PosController.compute(Xsd,Xs);
// Modify Fs ????
mst1_slv_cmd_N -=Vm1*Fs1;
}
/*
* Slave - Master 1 Channel
*/
// Calculate Positive Energy
if (Fk1*Vs>0)
{
//sla_mst1_cmd_P += Fk1*Vs;
sla_mst1_cmd_P += Fk1*delta;
}
else
{
//Do nothing
}
/*
* Master 2 - Slave Channel
*/
// Calculate Negative Energy and dissipate Active energy
if (Vm2*Fs2>0)
{
mst2_slv_cmd_N -=Vm2*Fs2;
}
else
{
//Do nothing
}
// PC:
if (mst2_slv_cmd_N+mst2_slv_cmd_P<0)
{
mst2_slv_cmd_N +=Vm2*Fs2; // backward 1 step
Xm2 = Xm2 - Vm2; // backward 1 step
// Modify Vm1
if (Fs2*Fs2>0)
Vm2 = (mst2_slv_cmd_N+mst2_slv_cmd_P)/Fs2;
else
Vm2 = 0;
//Update
Xm2 = Xm2 + Vm2;
Xsd = Scale *(alpha*Xm1 + (1-alpha)*Xm2);// design position
Vs = PosController.compute(Xsd,Xs);
//.........这里部分代码省略.........
示例5: update_omega
void MotorControl::update_omega(void) {
pid->setProcessValue(_compass->measure_angle(target_angle_));
omega = pid->compute();
move(power_, move_angle_);
}