本文整理汇总了C++中PID::SetOutputLimits方法的典型用法代码示例。如果您正苦于以下问题:C++ PID::SetOutputLimits方法的具体用法?C++ PID::SetOutputLimits怎么用?C++ PID::SetOutputLimits使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类PID
的用法示例。
在下文中一共展示了PID::SetOutputLimits方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: setup
void setup() {
// put your setup code here, to run once:
pinMode(pinHeater, OUTPUT);
pinMode(pinThermistor, INPUT);
digitalWrite(pinHeater, 0);
Serial.begin(57600);
Serial.setTimeout(250); // Set timeout to 250ms
// Restore calibration if already set.
thermCalibrated = true;
if(EEPROM.read(thermStepSetAddr) == 0) {
unsigned char setPoint[4];
for(int i = 0; i < 4; i++)
setPoint[i] = EEPROM.read(thermStepAddr+i);
thermStep = *((float*)setPoint);
} else {
thermCalibrated = false;
}
if(EEPROM.read(thermYIntSetAddr) == 0) {
unsigned char setPoint[4];
for(int i = 0; i < 4; i++)
setPoint[i] = EEPROM.read(thermYIntAddr+i);
thermYInt = *((float*)setPoint);
} else {
thermCalibrated = false;
}
pid.SetOutputLimits(0.0f, 1.0f);
pid.SetSampleTime(250); // 250ms compute period
pid.SetMode(MANUAL);
}
示例2: optionsPID
void PIDControl::optionsPID(int setTimePoint)
{
//tell the PID to range between 0 and the full window size
myPID.SetOutputLimits(0, setTimePoint);
//turn the PID on
myPID.SetMode(AUTOMATIC);
}
示例3: onSetAngleOutputLimits
void onSetAngleOutputLimits()
{
Serial.println("Receiving Angle output limits command...");
float lMin, lMax;
readLimitsArgs(&lMin, &lMax);
anglePID.SetOutputLimits(lMin, lMax);
cmdMessenger.sendCmd(kStatus, "Angle output limits set");
}
示例4: motorsInit
void motorsInit( int leftPin, int rightPin )
{
servoLeft.attach(leftPin);
servoRight.attach(rightPin);
servoLeft.writeMicroseconds(servoSpeedLeft);
servoRight.writeMicroseconds(servoSpeedRight);
#ifdef USE_PID
Input = 0;
Setpoint = 0;
turningPID.SetMode(AUTOMATIC);
turningPID.SetOutputLimits(-SERVO_DRIVE_TURN_SPEED, SERVO_DRIVE_TURN_SPEED);
#endif
}
示例5: setup
void setup() {
pinMode(MOSFET_PIN, OUTPUT);
pinMode(HEAT_ON_LED_PIN, OUTPUT);
pid.SetOutputLimits(-PID_OUTPUT_RANGE, PID_OUTPUT_RANGE);
pid_autotune.SetOutputStep(PID_OUTPUT_RANGE);
pid_autotune.SetControlType(1); // PID control type.
EEPROM.begin(EEPROM_TOTAL_BYTES);
byte* p = (byte*)(void*)&settings;
for (unsigned int i = 0; i < sizeof(settings); i++) {
*p++ = EEPROM.read(EEPROM_SETTINGS_LOCATION + i);
}
update_pid_tunings();
handle_enabled();
}
示例6: setup
void setup()
{
Wire.begin(myAddress);
Wire.onReceive(i2cReceive);
Wire.onRequest(i2cRequest);
pinMode(limit_switch_pin, INPUT);
mySerial.begin(9600); // Serial commuication to motor controller start.
setpoint = 0.0;
calibration(); // Running the calibration code on every start up
input = encoderRead();
myPID.SetMode(AUTOMATIC);
myPID.SetOutputLimits(-127, 127);
myPID.SetSampleTime(20);
}
示例7: speedControl
/* Calcule les pwm a appliquer pour un asservissement en vitesse en trapeze
* <> value_pwm_left : la pwm a appliquer sur la roue gauche [-255,255]
* <> value_pwm_right : la pwm a appliquer sur la roue droite [-255,255]
* */
void speedControl(int* value_pwm_left, int* value_pwm_right){
/* si le robot est en train de tourner, et qu'on lui donne une consigne de vitesse, il ne va pas partir droit
* solution = decomposer l'asservissement en vitesse en 2 :
* -> stopper le robot (les 2 vitesses = 0)
* -> lancer l'asservissement en vitesse
*/
static int start_time;
static bool initDone = false;
if(!initDone){
start_time = 0;
pwm = 0;
currentSpeed = 0;
consigne = 0;
pid4SpeedControl.Reset();
pid4SpeedControl.SetInputLimits(-20000,20000);
pid4SpeedControl.SetOutputLimits(-255,255);
pid4SpeedControl.SetSampleTime(DUREE_CYCLE);
pid4SpeedControl.SetMode(AUTO);
initDone = true;
}
/* Gestion de l'arret d'urgence */
if(current_goal.isCanceled){
initDone = false;
current_goal.isReached = true;
current_goal.isCanceled = false;
/* et juste pour etre sur */
(*value_pwm_right) = 0;
(*value_pwm_left) = 0;
return;
}
/* Gestion de la pause */
if(current_goal.isPaused){
(*value_pwm_right) = 0;
(*value_pwm_left) = 0;
return;
}
if(current_goal.phase == PHASE_1){ //phase d'acceleration
consigne = current_goal.speed;
currentSpeed = robot_state.speed;
if(abs(consigne-currentSpeed) < 1000){ /*si l'erreur est inferieur a 1, on concidere la consigne atteinte*/
current_goal.phase = PHASE_2;
start_time = millis();
}
}
else if(current_goal.phase == PHASE_2){ //phase de regime permanent
consigne = current_goal.speed;
currentSpeed = robot_state.speed;
if(millis()-start_time > current_goal.period){ /* fin de regime permanent */
current_goal.phase = PHASE_3;
}
}
else if(current_goal.phase == PHASE_3){ //phase de decceleration
consigne = 0;
currentSpeed = robot_state.speed;
if(abs(robot_state.speed)<1000){
current_goal.phase = PHASE_4;
}
}
pid4SpeedControl.Compute();
if(current_goal.phase == PHASE_4){
(*value_pwm_right) = 0;
(*value_pwm_left) = 0;
current_goal.isReached = true;
initDone = false;
}else{
(*value_pwm_right) = pwm;
(*value_pwm_left) = pwm;
}
}
示例8: positionControl
/* Calcule les pwm a appliquer pour un asservissement en position
* <> value_pwm_left : la pwm a appliquer sur la roue gauche [-255,255]
* <> value_pwm_right : la pwm a appliquer sur la roue droite [-255,255]
* */
void positionControl(int* value_pwm_left, int* value_pwm_right){
static bool initDone = false;
if(!initDone){
output4Delta = 0;
output4Alpha = 0;
currentDelta = .0;
currentAlpha = .0;
consigneDelta = .0;
consigneAlpha = .0;
pid4DeltaControl.Reset();
pid4DeltaControl.SetInputLimits(-TABLE_DISTANCE_MAX_MM/ENC_TICKS_TO_MM,TABLE_DISTANCE_MAX_MM/ENC_TICKS_TO_MM);
pid4DeltaControl.SetSampleTime(DUREE_CYCLE);
pid4DeltaControl.SetOutputLimits(-current_goal.speed,current_goal.speed); /*composante liee a la vitesse lineaire*/
pid4DeltaControl.SetMode(AUTO);
pid4AlphaControl.Reset();
pid4AlphaControl.SetSampleTime(DUREE_CYCLE);
pid4AlphaControl.SetInputLimits(-M_PI,M_PI);
pid4AlphaControl.SetOutputLimits(-255,255); /*composante lie a la vitesse de rotation*/
pid4AlphaControl.SetMode(AUTO);
initDone = true;
}
/* Gestion de l'arret d'urgence */
if(current_goal.isCanceled){
initDone = false;
current_goal.isReached = true;
current_goal.isCanceled = false;
/* et juste pour etre sur */
(*value_pwm_right) = 0;
(*value_pwm_left) = 0;
return;
}
/* Gestion de la pause */
if(current_goal.isPaused){
(*value_pwm_right) = 0;
(*value_pwm_left) = 0;
return;
}
/*calcul de l'angle alpha a combler avant d'etre aligne avec le point cible
* borne = [-PI PI] */
double angularCoeff = atan2(current_goal.y-robot_state.y,current_goal.x-robot_state.x); /*arctan(y/x) -> [-PI,PI]*/
currentAlpha = moduloPI(angularCoeff - robot_state.angle); /* il faut un modulo ici, c'est sur !
/* En fait, le sens est donne par l'ecart entre le coeff angulaire et l'angle courant du robot.
* Si cet angle est inferieur a PI/2 en valeur absolue, le robot avance en marche avant (il avance quoi)
* Si cet angle est superieur a PI/2 en valeur absolue, le robot recule en marche arriere (= il recule)
*/
int sens = 1;
if(abs(currentAlpha) > M_PI/2){/* c'est a dire qu'on a meilleur temps de partir en marche arriere */
sens = -1;
currentAlpha = moduloPI(M_PI + angularCoeff - robot_state.angle);
}
currentAlpha = -currentAlpha;
double dx = current_goal.x-robot_state.x;
double dy = current_goal.y-robot_state.y;
currentDelta = -sens * sqrt(dx*dx+dy*dy); // - parce que l'ecart doit etre negatif pour partir en avant
/*
Serial.print("coeff:");
Serial.print(angularCoeff);
Serial.print(" angle:");
Serial.print(robot_state.angle);
Serial.print(" alpha:");
Serial.print(currentAlpha);
Serial.print(" delta:");
Serial.print(currentDelta);
Serial.print(" x:");
Serial.print(current_goal.x);
Serial.print(" y:");
Serial.println(current_goal.y);
*/
/* on limite la vitesse lineaire quand on s'approche du but */
if (abs(currentDelta)<250){
pid4DeltaControl.SetOutputLimits(-min(50,current_goal.speed),min(50,current_goal.speed)); // composante liee a la vitesse lineaire
pid4AlphaControl.SetOutputLimits(-150,150); // composante liee a la vitesse de rotation
}
else if (abs(currentDelta)<500){
pid4DeltaControl.SetOutputLimits(-min(60,current_goal.speed),min(60,current_goal.speed)); // composante liee a la vitesse lineaire
pid4AlphaControl.SetOutputLimits(-150,150); // composante liee a la vitesse de rotation
}
else if (abs(currentDelta)<750){
pid4DeltaControl.SetOutputLimits(-min(80,current_goal.speed),min(80,current_goal.speed)); // composante liee a la vitesse lineaire
pid4AlphaControl.SetOutputLimits(-150,150); // composante liee a la vitesse de rotation
}
//.........这里部分代码省略.........
示例9: angleControl
/* Calcule les pwm a appliquer pour un asservissement en angle
* <> value_pwm_left : la pwm a appliquer sur la roue gauche [-255,255]
* <> value_pwm_right : la pwm a appliquer sur la roue droite [-255,255]
* */
void angleControl(int* value_pwm_left, int* value_pwm_right){
static bool initDone = false;
if(!initDone){
pwm = 0;
currentEcart = .0;
consigne = .0;
pid4AngleControl.Reset();
pid4AngleControl.SetInputLimits(-M_PI,M_PI);
pid4AngleControl.SetOutputLimits(-current_goal.speed,current_goal.speed);
pid4AngleControl.SetSampleTime(DUREE_CYCLE);
pid4AngleControl.SetMode(AUTO);
initDone = true;
}
/* Gestion de l'arret d'urgence */
if(current_goal.isCanceled){
initDone = false;
current_goal.isReached = true;
current_goal.isCanceled = false;
/* et juste pour etre sur */
(*value_pwm_right) = 0;
(*value_pwm_left) = 0;
return;
}
/* Gestion de la pause */
if(current_goal.isPaused){
(*value_pwm_right) = 0;
(*value_pwm_left) = 0;
return;
}
/*l'angle consigne doit etre comprise entre ]-PI, PI]
En fait pour simplifier, l'entree du PID sera l'ecart entre le l'angle courant et l'angle cible (consigne - angle courant)
la consigne (SetPoint) du PID sera 0
la sortie du PID sera le double pwm
*/
currentEcart = -moduloPI(current_goal.angle - robot_state.angle);
/*
Serial.print("goal: ");
Serial.print(current_goal.angle);
Serial.print(" current: ");
Serial.print(robot_state.angle);
Serial.print(" ecart: ");
Serial.println(currentEcart);
*/
if(abs(currentEcart) < 3.0f*M_PI/360.0f) /*si l'erreur est inferieur a 3deg, on concidere la consigne atteinte*/
current_goal.phase = PHASE_2;
else
current_goal.phase = PHASE_1;
pid4AngleControl.Compute();
if(current_goal.phase == PHASE_2){
(*value_pwm_right) = 0;
(*value_pwm_left) = 0;
}
else{
(*value_pwm_right) = pwm;
(*value_pwm_left) = -pwm;
}
if(current_goal.phase == PHASE_2){
if(current_goal.id != -1 && !current_goal.isMessageSent){
//le message d'arrivee n'a pas encore ete envoye a l'intelligence
//envoi du message
sendMessage(current_goal.id,2);
current_goal.isMessageSent = true;
}
if(!fifoIsEmpty()){ //on passe a la tache suivante
/*condition d'arret = si on a atteint le but et qu'un nouveau but attends dans la fifo*/
current_goal.isReached = true;
initDone = false;
}
}
}
示例10: positionControl
/* Calcule les pwm a appliquer pour un asservissement en position
* <> value_pwm_left : la pwm a appliquer sur la roue gauche [-255,255]
* <> value_pwm_right : la pwm a appliquer sur la roue droite [-255,255]
* */
void positionControl(int* value_pwm_left, int* value_pwm_right){
static bool initDone = false;
if(!initDone){
output4Delta = 0;
output4Alpha = 0;
currentDelta = .0;
currentAlpha = .0;
consigneDelta = .0;
consigneAlpha = .0;
pid4DeltaControl.Reset();
pid4DeltaControl.SetInputLimits(-TABLE_DISTANCE_MAX_MM/ENC_TICKS_TO_MM,TABLE_DISTANCE_MAX_MM/ENC_TICKS_TO_MM);
pid4DeltaControl.SetSampleTime(DUREE_CYCLE);
pid4DeltaControl.SetOutputLimits(-current_goal.speed,current_goal.speed); /*composante liee a la vitesse lineaire*/
pid4DeltaControl.SetMode(AUTO);
pid4AlphaControl.Reset();
pid4AlphaControl.SetSampleTime(DUREE_CYCLE);
pid4AlphaControl.SetInputLimits(-M_PI,M_PI);
pid4AlphaControl.SetOutputLimits(-255,255); /*composante lie a la vitesse de rotation*/
pid4AlphaControl.SetMode(AUTO);
initDone = true;
}
/* Gestion de l'arret d'urgence */
if(current_goal.isCanceled){
initDone = false;
current_goal.isReached = true;
current_goal.isCanceled = false;
/* et juste pour etre sur */
(*value_pwm_right) = 0;
(*value_pwm_left) = 0;
return;
}
/* Gestion de la pause */
if(current_goal.isPaused){
(*value_pwm_right) = 0;
(*value_pwm_left) = 0;
return;
}
/*calcul de l'angle alpha a combler avant d'etre aligne avec le point cible
* borne = [-PI PI] */
double angularCoeff = atan2(current_goal.y-robot_state.y,current_goal.x-robot_state.x); /*arctan(y/x) -> [-PI,PI]*/
currentAlpha = moduloPI(angularCoeff - robot_state.angle); /* il faut un modulo ici, c'est sur !
/* En fait, le sens est donne par l'ecart entre le coeff angulaire et l'angle courant du robot.
* Si cet angle est inferieur a PI/2 en valeur absolue, le robot avance en marche avant (il avance quoi)
* Si cet angle est superieur a PI/2 en valeur absolue, le robot recule en marche arriere (= il recule)
*/
int sens = 1;
if(current_goal.phase != PHASE_1 and abs(currentAlpha) > M_PI/2){/* c'est a dire qu'on a meilleur temps de partir en marche arriere */
sens = -1;
currentAlpha = moduloPI(M_PI + angularCoeff - robot_state.angle);
}
currentAlpha = -currentAlpha;
double dx = current_goal.x-robot_state.x;
double dy = current_goal.y-robot_state.y;
currentDelta = -sens * sqrt(dx*dx+dy*dy); // - parce que l'ecart doit etre negatif pour partir en avant
switch(current_goal.phase)
{
case PHASE_1:
if(abs(currentDelta)<1500) /*si l'ecart n'est plus que de 6 mm, on considere la consigne comme atteinte*/
{
current_goal.phase = PHASE_DECEL;
}
break;
case PHASE_DECEL:
if (fifoIsEmpty())
{
/* on limite la vitesse lineaire quand on s'approche du but */
if (abs(currentDelta)<250){
pid4DeltaControl.SetOutputLimits(-min(50,current_goal.speed),min(50,current_goal.speed)); // composante liee a la vitesse lineaire
pid4AlphaControl.SetOutputLimits(-150,150); // composante liee a la vitesse de rotation
}
else if (abs(currentDelta)<500){
pid4DeltaControl.SetOutputLimits(-min(60,current_goal.speed),min(60,current_goal.speed)); // composante liee a la vitesse lineaire
pid4AlphaControl.SetOutputLimits(-150,150); // composante liee a la vitesse de rotation
}
else if (abs(currentDelta)<750){
pid4DeltaControl.SetOutputLimits(-min(80,current_goal.speed),min(80,current_goal.speed)); // composante liee a la vitesse lineaire
pid4AlphaControl.SetOutputLimits(-150,150); // composante liee a la vitesse de rotation
}
else if (abs(currentDelta)<1000){
pid4DeltaControl.SetOutputLimits(-min(100,current_goal.speed),min(100,current_goal.speed)); // composante liee a la vitesse lineaire
pid4AlphaControl.SetOutputLimits(-150,150); // composante liee a la vitesse de rotation
//.........这里部分代码省略.........
示例11: initIMU
void initIMU(void) {
float selfTest9250[6];
/* Initialize motors */
Motor_Init();
trace_printf("Motor initialized.\n");
/* Initialize related variables */
GyroMeasError = _PI * (60.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta
GyroMeasDrift = _PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
/* Initialize balancing */
bal_pitch = 0;
bal_roll = 0;
bal_yaw = 0;
/* Initialize PID */
pitchReg.SetMode(AUTOMATIC);
pitchReg.SetOutputLimits(-PID_PITCH_INFLUENCE, PID_PITCH_INFLUENCE);
rollReg.SetMode(AUTOMATIC);
rollReg.SetOutputLimits(-PID_ROLL_INFLUENCE, PID_ROLL_INFLUENCE);
yawReg.SetMode(AUTOMATIC);
yawReg.SetOutputLimits(-PID_YAW_INFLUENCE, PID_YAW_INFLUENCE);
trace_printf("PID initialized.\n");
/* Detect whether MPU9250 is online */
MPU9250_I2C_Init();
resetMPU9250();
if(MPU9250_I2C_ByteRead(MPU9250_ADDRESS, WHO_AM_I_MPU9250) != 0x71) {
trace_printf("Could not find MPU9250!\n");
}
trace_printf("MPU9250 is online.\n");
timer_sleep(100);
/* MPU9250 self test and calibrate */
MPU9250SelfTest(selfTest9250);
trace_printf("x-axis self test: acceleration trim within : %6f %% of factory value\n", selfTest9250[0]);
trace_printf("y-axis self test: acceleration trim within : %f %% of factory value\n", selfTest9250[1]);
trace_printf("z-axis self test: acceleration trim within : %f %% of factory value\n", selfTest9250[2]);
trace_printf("x-axis self test: gyration trim within : %f %% of factory value\n", selfTest9250[3]);
trace_printf("y-axis self test: gyration trim within : %f %% of factory value\n", selfTest9250[4]);
trace_printf("z-axis self test: gyration trim within : %f %% of factory value\n", selfTest9250[5]);
timer_sleep(100);
calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers
trace_printf("x gyro bias = %f\n", gyroBias[0]);
trace_printf("y gyro bias = %f\n", gyroBias[1]);
trace_printf("z gyro bias = %f\n", gyroBias[2]);
trace_printf("x accel bias = %f\n", accelBias[0]);
trace_printf("y accel bias = %f\n", accelBias[1]);
trace_printf("z accel bias = %f\n", accelBias[2]);
timer_sleep(100);
/* Initialize MPU9250 and AK8963 */
initMPU9250();
trace_printf("MPU9250 initialized for active data mode....\n"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature
timer_sleep(500);
initAK8963(magCalibration);
trace_printf("AK8963 initialized for active data mode....\n"); // Initialize device for active mode read of magnetometer
trace_printf("Accelerometer full-scale range = %f g\n", 2.0f*(float)(1<<Ascale));
trace_printf("Gyroscope full-scale range = %f deg/s\n", 250.0f*(float)(1<<Gscale));
if(Mscale == 0) trace_printf("Magnetometer resolution = 14 bits\n");
if(Mscale == 1) trace_printf("Magnetometer resolution = 16 bits\n");
if(Mmode == 2) trace_printf("Magnetometer ODR = 8 Hz\n");
if(Mmode == 6) trace_printf("Magnetometer ODR = 100 Hz\n");
timer_sleep(100);
getAres(); // Get accelerometer sensitivity
getGres(); // Get gyro sensitivity
getMres(); // Get magnetometer sensitivity
trace_printf("Accelerometer sensitivity is %f LSB/g \n", 1.0f/aRes);
trace_printf("Gyroscope sensitivity is %f LSB/deg/s \n", 1.0f/gRes);
trace_printf("Magnetometer sensitivity is %f LSB/G \n", 1.0f/mRes);
magbias[0] = +470.; // User environmental x-axis correction in milliGauss, should be automatically calculated
magbias[1] = +120.; // User environmental x-axis correction in milliGauss
magbias[2] = +125.; // User environmental x-axis correction in milliGauss
}
示例12: main
int main(int argc, char **argv) {
START_EASYLOGGINGPP(argc, argv);
// Load configuration from file
el::Configurations conf("/home/debian/hackerboat/embedded_software/unified/setup/log.conf");
// Actually reconfigure all loggers instead
el::Loggers::reconfigureAllLoggers(conf);
BoatState *me = new BoatState();
me->rudder = new Servo();
me->throttle = new Throttle();
me->orient = new OrientationInput(SensorOrientation::SENSOR_AXIS_Z_UP);
double targetHeading = 0;
double in = 0, out = 0, setpoint = 0;
Pin enable(Conf::get()->servoEnbPort(), Conf::get()->servoEnbPin(), true, true);
PID *helm = new PID(&in, &out, &setpoint, 0, 0, 0, 0);
helm->SetMode(AUTOMATIC);
helm->SetControllerDirection(Conf::get()->rudderDir());
helm->SetSampleTime(Conf::get()->rudderPeriod());
helm->SetOutputLimits(Conf::get()->rudderMin(),
Conf::get()->rudderMax());
helm->SetTunings(10,0,0);
if (!me->rudder->attach(Conf::get()->rudderPort(), Conf::get()->rudderPin())) {
std::cout << "Rudder failed to attach 1" << std::endl;
return -1;
}
if (!me->rudder->isAttached()) {
std::cout << "Rudder failed to attach 2" << std::endl;
return -1;
}
if (me->orient->begin() && me->orient->isValid()) {
cout << "Initialization successful" << endl;
cout << "Oriented with Z axis up" << endl;
} else {
cout << "Initialization failed; exiting" << endl;
return -1;
}
for (int i = 0; i < 100; i++) {
double currentheading = me->orient->getOrientation()->makeTrue().heading;
if (isfinite(currentheading)) targetHeading += currentheading;
cout << ".";
std::this_thread::sleep_for(100ms);
}
cout << endl;
targetHeading = targetHeading/100;
cout << "Target heading is " << to_string(targetHeading) << " degrees true " << endl;
int count = 0;
for (;;) {
in = me->orient->getOrientation()->makeTrue().headingError(targetHeading);
count++;
LOG_EVERY_N(10, DEBUG) << "True Heading: " << me->orient->getOrientation()->makeTrue()
<< ", Target Course: " << targetHeading;
helm->Compute();
me->rudder->write(out);
LOG_EVERY_N(10, DEBUG) << "Rudder command: " << to_string(out);
std::this_thread::sleep_for(100ms);
if (count > 9) {
count = 0;
cout << "True Heading: " << me->orient->getOrientation()->makeTrue().heading
<< "\tTarget Course: " << targetHeading
<< "\tRudder command: " << to_string(out) << endl;
}
}
return 0;
}
示例13: run
virtual void run() {
int16_t accData[3];
int16_t gyrData[3];
CTimer tm(TIMER0);
tm.second(DT);
tm.enable();
myPID.SetMode(AUTOMATIC);
myPID.SetOutputLimits(-100.0, 100.0);
myPID.SetSampleTime(PID_SAMPLE_RATE);
m_roll = 0.0f;
m_pitch = 0.0f;
double output;
#if USE_AUTO_TUNING
double sp_input, sp_output, sp_setpoint, lastRoll;
PID speedPID(&sp_input, &sp_output, &sp_setpoint, 35, 1, 2, DIRECT);
speedPID.SetMode(AUTOMATIC);
speedPID.SetOutputLimits(-config.roll_offset, config.roll_offset);
speedPID.SetSampleTime(PID_SAMPLE_RATE);
sp_input = 0;
sp_setpoint = 0;
lastRoll = 0;
#endif
//
// loop
//
while (isAlive()) {
//
// wait timer interrupt (DT)
//
if (tm.wait()) {
//
// read sensors
//
m_mxMPU.lock();
m_mpu->getMotion6(&accData[0], &accData[1], &accData[2],
&gyrData[0], &gyrData[1], &gyrData[2]);
m_mxMPU.unlock();
//
// filter
//
ComplementaryFilter(accData, gyrData, &m_pitch, &m_roll);
#if USE_AUTO_TUNING
sp_input = (lastRoll - m_roll) / PID_SAMPLE_RATE; // roll speed
lastRoll = m_roll;
speedPID.Compute();
m_setpoint = -sp_output; // tune output angle
#else
m_roll -= config.roll_offset;
#endif
m_input = m_roll;
myPID.Compute();
if ( m_output > config.skip_interval ) {
LEDs[1] = LED_ON;
LEDs[2] = LED_OFF;
output = map(m_output, config.skip_interval, 100, config.pwm_min, config.pwm_max);
m_left->direct(DIR_FORWARD);
m_right->direct(DIR_FORWARD);
} else if ( m_output<-config.skip_interval ) {
LEDs[1] = LED_OFF;
LEDs[2] = LED_ON;
output = map(m_output, -config.skip_interval, -100, config.pwm_min, config.pwm_max);
m_left->direct(DIR_REVERSE);
m_right->direct(DIR_REVERSE);
} else {
LEDs[1] = LED_OFF;
LEDs[2] = LED_OFF;
output = 0;
m_left->direct(DIR_STOP);
m_right->direct(DIR_STOP);
}
//
// auto power off when fell.
//
if ( abs(m_roll)>65 ) {
output = 0;
}
//
// output
//
m_left->dutyCycle(output * config.left_power);
m_right->dutyCycle(output * config.right_power);
}
}