当前位置: 首页>>代码示例>>C++>>正文


C++ Level::GetLevelID方法代码示例

本文整理汇总了C++中Level::GetLevelID方法的典型用法代码示例。如果您正苦于以下问题:C++ Level::GetLevelID方法的具体用法?C++ Level::GetLevelID怎么用?C++ Level::GetLevelID使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Level的用法示例。


在下文中一共展示了Level::GetLevelID方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: Input

 void RigidBodyModeFactory<Scalar, LocalOrdinal, GlobalOrdinal, Node, LocalMatOps>::DeclareInput(Level &currentLevel) const {
   if (currentLevel.IsAvailable(nspName_, NoFactory::get()) == false && currentLevel.GetLevelID() == 0) {
     Input(currentLevel, "A");
     //Input(currentLevel,"Coordinates");
   }
   if (currentLevel.GetLevelID() !=0) {
     currentLevel.DeclareInput("Nullspace", GetFactory(nspName_).get(), this); /* ! "Nullspace" and nspName_ mismatch possible here */
   }
 }
开发者ID:gitter-badger,项目名称:quinoa,代码行数:9,代码来源:MueLu_RigidBodyModeFactory_def.hpp

示例2: m

  void TogglePFactory<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Build(Level& fineLevel, Level &coarseLevel) const {
    FactoryMonitor m(*this, "Prolongator toggle", coarseLevel);
    std::ostringstream levelstr;
    levelstr << coarseLevel.GetLevelID();

    typedef typename Teuchos::ScalarTraits<SC>::magnitudeType Magnitude;

    TEUCHOS_TEST_FOR_EXCEPTION(nspFacts_.size() != prolongatorFacts_.size(), Exceptions::RuntimeError, "MueLu::TogglePFactory::Build: The number of provided prolongator factories and coarse nullspace factories must be identical.");
    TEUCHOS_TEST_FOR_EXCEPTION(nspFacts_.size() != 2, Exceptions::RuntimeError, "MueLu::TogglePFactory::Build: TogglePFactory needs two different transfer operator strategies for toggling."); // TODO adapt this/weaken this as soon as other toggling strategies are introduced.

    // decision routine which prolongator factory to be used
    int nProlongatorFactory = 0; // default behavior: use first prolongator in list

    // extract user parameters
    const Teuchos::ParameterList & pL = GetParameterList();
    std::string mode = Teuchos::as<std::string>(pL.get<std::string>("toggle: mode"));
    int semicoarsen_levels = Teuchos::as<int>(pL.get<int>("semicoarsen: number of levels"));

    TEUCHOS_TEST_FOR_EXCEPTION(mode!="semicoarsen", Exceptions::RuntimeError, "MueLu::TogglePFactory::Build: The 'toggle: mode' parameter must be set to 'semicoarsen'. No other mode supported, yet.");

    LO NumZDir = -1;
    if(fineLevel.IsAvailable("NumZLayers", NoFactory::get())) {
      NumZDir = fineLevel.Get<LO>("NumZLayers", NoFactory::get()); //obtain info
      GetOStream(Runtime1) << "Number of layers for semicoarsening: " << NumZDir << std::endl;
    }

    // Make a decision which prolongator to be used.
    if(fineLevel.GetLevelID() >= semicoarsen_levels || NumZDir == 1) {
      nProlongatorFactory = 1;
    } else {
      nProlongatorFactory = 0;
    }

    RCP<Matrix> P = Teuchos::null;
    RCP<MultiVector> coarseNullspace = Teuchos::null;

    // call Build for selected transfer operator
    GetOStream(Runtime0) << "TogglePFactory: call transfer factory: " << (prolongatorFacts_[nProlongatorFactory])->description() << std::endl;
    prolongatorFacts_[nProlongatorFactory]->CallBuild(coarseLevel);
    P = coarseLevel.Get< RCP<Matrix> >("P", (prolongatorFacts_[nProlongatorFactory]).get());
    coarseNullspace = coarseLevel.Get< RCP<MultiVector> >("Nullspace", (nspFacts_[nProlongatorFactory]).get());

    // Release dependencies of all prolongator and coarse level null spaces
    for(size_t t=0; t<nspFacts_.size(); ++t) {
      coarseLevel.Release(*(prolongatorFacts_[t]));
      coarseLevel.Release(*(nspFacts_[t]));
    }

    // store prolongator with this factory identification.
    Set(coarseLevel, "P", P);
    Set(coarseLevel, "Nullspace", coarseNullspace);

  } //Build()
开发者ID:abhishek4747,项目名称:trilinos,代码行数:53,代码来源:MueLu_TogglePFactory_def.hpp

示例3: m

  void NullspacePresmoothFactory<Scalar, LocalOrdinal, GlobalOrdinal, Node, LocalMatOps>::Build(Level &currentLevel) const {
    FactoryMonitor m(*this, "Nullspace presmooth factory", currentLevel);

    RCP<MultiVector> newB;
    if (currentLevel.GetLevelID() == 0) {
      RCP<Matrix>      A = Get< RCP<Matrix> >     (currentLevel, "A");
      RCP<MultiVector> B = Get< RCP<MultiVector> >(currentLevel, "Nullspace");
      newB = MultiVectorFactory::Build(B->getMap(), B->getNumVectors());

      Teuchos::ArrayRCP<SC> D = Utils::GetMatrixDiagonal(*A);

      SC damping = 4./3;
      damping /= Utils::PowerMethod(*A, true, (LO) 10, 1e-4);

      A->apply(*B, *newB, Teuchos::NO_TRANS);

      size_t numVec  = newB->getNumVectors();
      LO numElements = newB->getLocalLength();
      for (size_t j = 0; j < numVec; j++) {
        Teuchos::ArrayRCP<const SC> Bj    = B->getData(j);
        Teuchos::ArrayRCP<SC>       newBj = newB->getDataNonConst(j);

        for (LO i = 0; i < numElements; i++)
          newBj[i] = Bj[i] - damping*newBj[i]/D[i];
      }
    } else {
      newB = Get< RCP<MultiVector> >(currentLevel, "Nullspace");
    }

    // provide "Nullspace" variable on current level
    Set(currentLevel, "Nullspace", newB);

  } // Build
开发者ID:gitter-badger,项目名称:quinoa,代码行数:33,代码来源:MueLu_NullspacePresmoothFactory_def.hpp

示例4: CallDeclareInput

 //!
 virtual void CallDeclareInput(Level & requestedLevel) const {
   if (requestedLevel.GetPreviousLevel() == Teuchos::null) {
     std::ostringstream errStr;
     errStr << "LevelID = " << requestedLevel.GetLevelID();
     throw Exceptions::DependencyError(errStr.str());
   }
   DeclareInput(*requestedLevel.GetPreviousLevel(), requestedLevel);
 }
开发者ID:00liujj,项目名称:trilinos,代码行数:9,代码来源:MueLu_TwoLevelFactoryBase.hpp

示例5: m

void UserAggregationFactory<LocalOrdinal, GlobalOrdinal, Node, LocalMatOps>::Build(Level &currentLevel) const {
  FactoryMonitor m(*this, "Build", currentLevel);

  const ParameterList & pL = GetParameterList();

  RCP< const Teuchos::Comm<int> > comm = Teuchos::DefaultComm<int>::getComm();
  const int myRank = comm->getRank();

  std::string fileName = pL.get<std::string>("filePrefix") + toString(currentLevel.GetLevelID()) + "_" + toString(myRank) + "." + pL.get<std::string>("fileExt");
  std::ifstream ifs(fileName.c_str());
  if (!ifs.good())
    throw Exceptions::RuntimeError("Cannot read data from \"" + fileName + "\"");

  LO numVertices, numAggregates;
  ifs >> numVertices >> numAggregates;

  // FIXME: what is the map?
  Xpetra::UnderlyingLib  lib       = Xpetra::UseEpetra;
  const int              indexBase = 0;
  RCP<Map> map = MapFactory::Build(lib, numVertices, indexBase, comm);

  RCP<Aggregates> aggregates = rcp(new Aggregates(map));
  aggregates->setObjectLabel("User");

  aggregates->SetNumAggregates(numAggregates);

  Teuchos::ArrayRCP<LO> vertex2AggId = aggregates->GetVertex2AggId()->getDataNonConst(0);
  Teuchos::ArrayRCP<LO> procWinner   = aggregates->GetProcWinner()  ->getDataNonConst(0);

  for (LO i = 0; i < numAggregates; i++) {
    int aggSize = 0;
    ifs >> aggSize;

    std::vector<LO> list(aggSize);
    for (int k = 0; k < aggSize; k++) {
      // FIXME: File contains GIDs, we need LIDs
      // for now, works on a single processor
      ifs >> list[k];
    }

    // Mark first node as root node for the aggregate
    aggregates->SetIsRoot(list[0]);

    // Fill vertex2AggId and procWinner structure with information
    for (int k = 0; k < aggSize; k++) {
      vertex2AggId[list[k]] = i;
      procWinner  [list[k]] = myRank;
    }
  }

  // FIXME: do the proper check whether aggregates cross interprocessor boundary
  aggregates->AggregatesCrossProcessors(false);

  Set(currentLevel, "Aggregates", aggregates);

  GetOStream(Statistics0, 0) << aggregates->description() << std::endl;
}
开发者ID:,项目名称:,代码行数:57,代码来源:

示例6: CallBuild

    //!
    virtual void CallBuild(Level& requestedLevel) const {
      int levelID = requestedLevel.GetLevelID();

#ifdef HAVE_MUELU_DEBUG
      // We cannot call Build method twice for the same level, but we can call it multiple times for different levels
      TEUCHOS_TEST_FOR_EXCEPTION((multipleCallCheck_ == ENABLED) && (multipleCallCheckGlobal_ == ENABLED) && (lastLevelID_ == levelID),
                                 Exceptions::RuntimeError,
                                 this->ShortClassName() << "::Build() called twice for the same level (levelID=" << levelID
                                 << "). This is likely due to a configuration error.");
      if (multipleCallCheck_ == FIRSTCALL)
        multipleCallCheck_ = ENABLED;

      lastLevelID_ = levelID;
#endif
      TEUCHOS_TEST_FOR_EXCEPTION(requestedLevel.GetPreviousLevel() == Teuchos::null, Exceptions::RuntimeError, "LevelID = " << levelID);

#ifdef HAVE_MUELU_TIMER_SYNCHRONIZATION
      RCP<const Teuchos::Comm<int> > comm = requestedLevel.GetComm();
      if (comm.is_null()) {
        // Some factories are called before we constructed Ac, and therefore,
        // before we set the level communicator. For such factories we can get
        // the comm from the previous level, as all processes go there
        RCP<Level>& prevLevel = requestedLevel.GetPreviousLevel();
        if (!prevLevel.is_null())
          comm = prevLevel->GetComm();
      }

      // Synchronization timer
      std::string syncTimer = this->ShortClassName() + ": Build sync (level=" + toString(requestedLevel.GetLevelID()) + ")";
      if (!comm.is_null()) {
        TimeMonitor timer(*this, syncTimer);
        comm->barrier();
      }
#endif

      Build(*requestedLevel.GetPreviousLevel(), requestedLevel);

#ifdef HAVE_MUELU_TIMER_SYNCHRONIZATION
      // Synchronization timer
      if (!comm.is_null()) {
        TimeMonitor timer(*this, syncTimer);
        comm->barrier();
      }
#endif

      GetOStream(Test) << *RemoveFactoriesFromList(GetParameterList()) << std::endl;
    }
开发者ID:00liujj,项目名称:trilinos,代码行数:48,代码来源:MueLu_TwoLevelFactoryBase.hpp

示例7: m

  void SaPFactory_kokkos<Scalar,LocalOrdinal,GlobalOrdinal,Kokkos::Compat::KokkosDeviceWrapperNode<DeviceType>>::BuildP(Level& fineLevel, Level& coarseLevel) const {
    FactoryMonitor m(*this, "Prolongator smoothing", coarseLevel);

    // Add debugging information
    DeviceType::execution_space::print_configuration(GetOStream(Runtime1));

    typedef typename Teuchos::ScalarTraits<SC>::magnitudeType Magnitude;

    // Get default tentative prolongator factory
    // Getting it that way ensure that the same factory instance will be used for both SaPFactory_kokkos and NullspaceFactory.
    // -- Warning: Do not use directly initialPFact_. Use initialPFact instead everywhere!
    RCP<const FactoryBase> initialPFact = GetFactory("P");
    if (initialPFact == Teuchos::null) { initialPFact = coarseLevel.GetFactoryManager()->GetFactory("Ptent"); }

    // Level Get
    RCP<Matrix> A     = Get< RCP<Matrix> >(fineLevel, "A");
    RCP<Matrix> Ptent = coarseLevel.Get< RCP<Matrix> >("P", initialPFact.get());

    if(restrictionMode_) {
      SubFactoryMonitor m2(*this, "Transpose A", coarseLevel);

      A = Utilities_kokkos::Transpose(*A, true); // build transpose of A explicitly
    }

    //Build final prolongator
    RCP<Matrix> finalP; // output

    // Reuse pattern if available
    RCP<ParameterList> APparams = rcp(new ParameterList);
    if (coarseLevel.IsAvailable("AP reuse data", this)) {
      GetOStream(static_cast<MsgType>(Runtime0 | Test)) << "Reusing previous AP data" << std::endl;

      APparams = coarseLevel.Get< RCP<ParameterList> >("AP reuse data", this);

      if (APparams->isParameter("graph"))
        finalP = APparams->get< RCP<Matrix> >("graph");
    }

    const ParameterList& pL = GetParameterList();
    SC dampingFactor      = as<SC>(pL.get<double>("sa: damping factor"));
    LO maxEigenIterations = as<LO>(pL.get<int>("sa: eigenvalue estimate num iterations"));
    bool estimateMaxEigen = pL.get<bool>("sa: calculate eigenvalue estimate");
    if (dampingFactor != Teuchos::ScalarTraits<SC>::zero()) {

      SC lambdaMax;
      {
        SubFactoryMonitor m2(*this, "Eigenvalue estimate", coarseLevel);
        lambdaMax = A->GetMaxEigenvalueEstimate();
        if (lambdaMax == -Teuchos::ScalarTraits<SC>::one() || estimateMaxEigen) {
          GetOStream(Statistics1) << "Calculating max eigenvalue estimate now (max iters = "<< maxEigenIterations << ")" << std::endl;
          Magnitude stopTol = 1e-4;
          lambdaMax = Utilities_kokkos::PowerMethod(*A, true, maxEigenIterations, stopTol);
          A->SetMaxEigenvalueEstimate(lambdaMax);
        } else {
          GetOStream(Statistics1) << "Using cached max eigenvalue estimate" << std::endl;
        }
        GetOStream(Statistics0) << "Prolongator damping factor = " << dampingFactor/lambdaMax << " (" << dampingFactor << " / " << lambdaMax << ")" << std::endl;
      }

      {
        SubFactoryMonitor m2(*this, "Fused (I-omega*D^{-1} A)*Ptent", coarseLevel);
        RCP<Vector> invDiag = Utilities_kokkos::GetMatrixDiagonalInverse(*A);

        SC omega = dampingFactor / lambdaMax;

        // finalP = Ptent + (I - \omega D^{-1}A) Ptent
        finalP = Xpetra::IteratorOps<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Jacobi(omega, *invDiag, *A, *Ptent, finalP, GetOStream(Statistics2), std::string("MueLu::SaP-") + toString(coarseLevel.GetLevelID()), APparams);
      }

    } else {
      finalP = Ptent;
    }

    // Level Set
    if (!restrictionMode_) {
      // prolongation factory is in prolongation mode
      Set(coarseLevel, "P", finalP);

      // NOTE: EXPERIMENTAL
      if (Ptent->IsView("stridedMaps"))
        finalP->CreateView("stridedMaps", Ptent);

    } else {
      // prolongation factory is in restriction mode
      RCP<Matrix> R = Utilities_kokkos::Transpose(*finalP, true);
      Set(coarseLevel, "R", R);

      // NOTE: EXPERIMENTAL
      if (Ptent->IsView("stridedMaps"))
        R->CreateView("stridedMaps", Ptent, true);
    }

    if (IsPrint(Statistics1)) {
      RCP<ParameterList> params = rcp(new ParameterList());
      params->set("printLoadBalancingInfo", true);
      params->set("printCommInfo",          true);
      GetOStream(Statistics1) << PerfUtils::PrintMatrixInfo(*finalP, (!restrictionMode_ ? "P" : "R"), params);
    }

  } //Build()
开发者ID:mhoemmen,项目名称:Trilinos,代码行数:100,代码来源:MueLu_SaPFactory_kokkos_def.hpp

示例8: m

  void RAPFactory<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Build(Level& fineLevel, Level& coarseLevel) const {
    {
      FactoryMonitor m(*this, "Computing Ac", coarseLevel);
      std::ostringstream levelstr;
      levelstr << coarseLevel.GetLevelID();

      TEUCHOS_TEST_FOR_EXCEPTION(hasDeclaredInput_==false, Exceptions::RuntimeError,
                                 "MueLu::RAPFactory::Build(): CallDeclareInput has not been called before Build!");

      // Set "Keeps" from params
      const Teuchos::ParameterList& pL = GetParameterList();
      if (pL.get<bool>("Keep AP Pattern"))
        coarseLevel.Keep("AP Pattern",  this);
      if (pL.get<bool>("Keep RAP Pattern"))
        coarseLevel.Keep("RAP Pattern", this);

      RCP<Matrix> A = Get< RCP<Matrix> >(fineLevel,   "A");
      RCP<Matrix> P = Get< RCP<Matrix> >(coarseLevel, "P"), AP, Ac;

      // Reuse pattern if available (multiple solve)
      if (coarseLevel.IsAvailable("AP Pattern", this)) {
        GetOStream(Runtime0) << "Ac: Using previous AP pattern" << std::endl;

        AP = Get< RCP<Matrix> >(coarseLevel, "AP Pattern");
      }

      {
        SubFactoryMonitor subM(*this, "MxM: A x P", coarseLevel);

        AP = Utils::Multiply(*A, false, *P, false, AP, GetOStream(Statistics2),true,true,std::string("MueLu::A*P-")+levelstr.str());
      }
      if (pL.get<bool>("Keep AP Pattern"))
        Set(coarseLevel, "AP Pattern", AP);

      // Reuse coarse matrix memory if available (multiple solve)
      if (coarseLevel.IsAvailable("RAP Pattern", this)) {
        GetOStream(Runtime0) << "Ac: Using previous RAP pattern" << std::endl;

        Ac = Get< RCP<Matrix> >(coarseLevel, "RAP Pattern");
        // Some eigenvalue may have been cached with the matrix in the previous run.
        // As the matrix values will be updated, we need to reset the eigenvalue.
        Ac->SetMaxEigenvalueEstimate(-Teuchos::ScalarTraits<SC>::one());
      }

      // If we do not modify matrix later, allow optimization of storage.
      // This is necessary for new faster Epetra MM kernels.
      bool doOptimizeStorage = !pL.get<bool>("RepairMainDiagonal");

      const bool doTranspose    = true;
      const bool doFillComplete = true;
      if (pL.get<bool>("transpose: use implicit") == true) {
        SubFactoryMonitor m2(*this, "MxM: P' x (AP) (implicit)", coarseLevel);
        Ac = Utils::Multiply(*P,  doTranspose, *AP, !doTranspose, Ac, GetOStream(Statistics2), doFillComplete, doOptimizeStorage,std::string("MueLu::R*(AP)-implicit-")+levelstr.str());

      } else {
        RCP<Matrix> R = Get< RCP<Matrix> >(coarseLevel, "R");

        SubFactoryMonitor m2(*this, "MxM: R x (AP) (explicit)", coarseLevel);
        Ac = Utils::Multiply(*R, !doTranspose, *AP, !doTranspose, Ac, GetOStream(Statistics2), doFillComplete, doOptimizeStorage,std::string("MueLu::R*(AP)-explicit-")+levelstr.str());
      }

      CheckRepairMainDiagonal(Ac);

      if (IsPrint(Statistics1)) {
        RCP<ParameterList> params = rcp(new ParameterList());;
        params->set("printLoadBalancingInfo", true);
        params->set("printCommInfo",          true);
        GetOStream(Statistics1) << PerfUtils::PrintMatrixInfo(*Ac, "Ac", params);
      }

      Set(coarseLevel, "A",           Ac);
      if (pL.get<bool>("Keep RAP Pattern"))
        Set(coarseLevel, "RAP Pattern", Ac);
    }

    if (transferFacts_.begin() != transferFacts_.end()) {
      SubFactoryMonitor m(*this, "Projections", coarseLevel);

      // call Build of all user-given transfer factories
      for (std::vector<RCP<const FactoryBase> >::const_iterator it = transferFacts_.begin(); it != transferFacts_.end(); ++it) {
        RCP<const FactoryBase> fac = *it;
        GetOStream(Runtime0) << "RAPFactory: call transfer factory: " << fac->description() << std::endl;
        fac->CallBuild(coarseLevel);
        // Coordinates transfer is marginally different from all other operations
        // because it is *optional*, and not required. For instance, we may need
        // coordinates only on level 4 if we start repartitioning from that level,
        // but we don't need them on level 1,2,3. As our current Hierarchy setup
        // assumes propagation of dependencies only through three levels, this
        // means that we need to rely on other methods to propagate optional data.
        //
        // The method currently used is through RAP transfer factories, which are
        // simply factories which are called at the end of RAP with a single goal:
        // transfer some fine data to coarser level. Because these factories are
        // kind of outside of the mainline factories, they behave different. In
        // particular, we call their Build method explicitly, rather than through
        // Get calls. This difference is significant, as the Get call is smart
        // enough to know when to release all factory dependencies, and Build is
        // dumb. This led to the following CoordinatesTransferFactory sequence:
        // 1. Request level 0
        // 2. Request level 1
//.........这里部分代码省略.........
开发者ID:FreeScienceCommunity,项目名称:trilinos,代码行数:101,代码来源:MueLu_RAPFactory_def.hpp

示例9: Setup

  void IfpackSmoother::Setup(Level &currentLevel) {
    FactoryMonitor m(*this, "Setup Smoother", currentLevel);
    if (SmootherPrototype::IsSetup() == true)
      GetOStream(Warnings0, 0) << "Warning: MueLu::IfpackSmoother::Setup(): Setup() has already been called";

    A_ = Factory::Get< RCP<Matrix> >(currentLevel, "A");

    double lambdaMax = -1.0;
    if (type_ == "Chebyshev") {
      std::string maxEigString   = "chebyshev: max eigenvalue";
      std::string eigRatioString = "chebyshev: ratio eigenvalue";

      try {
        lambdaMax = Teuchos::getValue<Scalar>(this->GetParameter(maxEigString));
        this->GetOStream(Statistics1, 0) << maxEigString << " (cached with smoother parameter list) = " << lambdaMax << std::endl;

      } catch (Teuchos::Exceptions::InvalidParameterName) {
        lambdaMax = A_->GetMaxEigenvalueEstimate();

        if (lambdaMax != -1.0) {
          this->GetOStream(Statistics1, 0) << maxEigString << " (cached with matrix) = " << lambdaMax << std::endl;
          this->SetParameter(maxEigString, ParameterEntry(lambdaMax));
        }
      }

      // Calculate the eigenvalue ratio
      const Scalar defaultEigRatio = 20;

      Scalar ratio = defaultEigRatio;
      try {
        ratio = Teuchos::getValue<Scalar>(this->GetParameter(eigRatioString));

      } catch (Teuchos::Exceptions::InvalidParameterName) {
        this->SetParameter(eigRatioString, ParameterEntry(ratio));
      }

      if (currentLevel.GetLevelID()) {
        // Update ratio to be
        //   ratio = max(number of fine DOFs / number of coarse DOFs, defaultValue)
        //
        // NOTE: We don't need to request previous level matrix as we know for sure it was constructed
        RCP<const Matrix> fineA = currentLevel.GetPreviousLevel()->Get<RCP<Matrix> >("A");
        size_t nRowsFine   = fineA->getGlobalNumRows();
        size_t nRowsCoarse = A_->getGlobalNumRows();

        ratio = std::max(ratio, as<Scalar>(nRowsFine)/nRowsCoarse);

        this->GetOStream(Statistics1, 0) << eigRatioString << " (computed) = " << ratio << std::endl;
        this->SetParameter(eigRatioString, ParameterEntry(ratio));
      }
    }

    RCP<Epetra_CrsMatrix> epA = Utils::Op2NonConstEpetraCrs(A_);

    Ifpack factory;
    prec_ = rcp(factory.Create(type_, &(*epA), overlap_));
    TEUCHOS_TEST_FOR_EXCEPTION(prec_.is_null(), Exceptions::RuntimeError, "Could not create an Ifpack preconditioner with type = \"" << type_ << "\"");
    SetPrecParameters();
    prec_->Compute();

    SmootherPrototype::IsSetup(true);

    if (type_ == "Chebyshev" && lambdaMax == -1.0) {
      Teuchos::RCP<Ifpack_Chebyshev> chebyPrec = rcp_dynamic_cast<Ifpack_Chebyshev>(prec_);
      if (chebyPrec != Teuchos::null) {
        lambdaMax = chebyPrec->GetLambdaMax();
        A_->SetMaxEigenvalueEstimate(lambdaMax);
        this->GetOStream(Statistics1, 0) << "chebyshev: max eigenvalue (calculated by Ifpack)" << " = " << lambdaMax << std::endl;
      }
      TEUCHOS_TEST_FOR_EXCEPTION(lambdaMax == -1.0, Exceptions::RuntimeError, "MueLu::IfpackSmoother::Setup(): no maximum eigenvalue estimate");
    }

    this->GetOStream(Statistics0, 0) << description() << std::endl;
  }
开发者ID:gitter-badger,项目名称:quinoa,代码行数:74,代码来源:MueLu_IfpackSmoother.cpp

示例10: m

  void SaPFactory<Scalar, LocalOrdinal, GlobalOrdinal, Node>::BuildP(Level &fineLevel, Level &coarseLevel) const {
    FactoryMonitor m(*this, "Prolongator smoothing", coarseLevel);
    std::ostringstream levelstr;
    levelstr << coarseLevel.GetLevelID();

    typedef typename Teuchos::ScalarTraits<SC>::magnitudeType Magnitude;

    // Get default tentative prolongator factory
    // Getting it that way ensure that the same factory instance will be used for both SaPFactory and NullspaceFactory.
    // -- Warning: Do not use directly initialPFact_. Use initialPFact instead everywhere!
    RCP<const FactoryBase> initialPFact = GetFactory("P");
    if (initialPFact == Teuchos::null) { initialPFact = coarseLevel.GetFactoryManager()->GetFactory("Ptent"); }

    // Level Get
    RCP<Matrix> A     = Get< RCP<Matrix> >(fineLevel, "A");
    RCP<Matrix> Ptent = coarseLevel.Get< RCP<Matrix> >("P", initialPFact.get());

    if(restrictionMode_) {
      SubFactoryMonitor m2(*this, "Transpose A", coarseLevel);
      A = Utils2::Transpose(*A, true); // build transpose of A explicitely
    }

    //Build final prolongator
    RCP<Matrix> finalP; // output

    const ParameterList & pL = GetParameterList();
    Scalar dampingFactor = as<Scalar>(pL.get<double>("sa: damping factor"));
    LO maxEigenIterations = as<LO>(pL.get<int>("sa: eigenvalue estimate num iterations"));
    bool estimateMaxEigen = pL.get<bool>("sa: calculate eigenvalue estimate");
    if (dampingFactor != Teuchos::ScalarTraits<Scalar>::zero()) {

      Scalar lambdaMax;
      {
        SubFactoryMonitor m2(*this, "Eigenvalue estimate", coarseLevel);
        lambdaMax = A->GetMaxEigenvalueEstimate();
        if (lambdaMax == -Teuchos::ScalarTraits<SC>::one() || estimateMaxEigen) {
          GetOStream(Statistics1) << "Calculating max eigenvalue estimate now (max iters = "<< maxEigenIterations << ")" << std::endl;
          Magnitude stopTol = 1e-4;
          lambdaMax = Utils::PowerMethod(*A, true, maxEigenIterations, stopTol);
          A->SetMaxEigenvalueEstimate(lambdaMax);
        } else {
          GetOStream(Statistics1) << "Using cached max eigenvalue estimate" << std::endl;
        }
        GetOStream(Statistics0) << "Prolongator damping factor = " << dampingFactor/lambdaMax << " (" << dampingFactor << " / " << lambdaMax << ")" << std::endl;
      }

      {
        SubFactoryMonitor m2(*this, "Fused (I-omega*D^{-1} A)*Ptent", coarseLevel);
        Teuchos::RCP<Vector> invDiag = Utils::GetMatrixDiagonalInverse(*A);

        SC omega = dampingFactor / lambdaMax;

        // finalP = Ptent + (I - \omega D^{-1}A) Ptent
        finalP = Utils::Jacobi(omega, *invDiag, *A, *Ptent, finalP, GetOStream(Statistics2),std::string("MueLu::SaP-")+levelstr.str());
      }

    } else {
      finalP = Ptent;
    }

    // Level Set
    if (!restrictionMode_) {
      // prolongation factory is in prolongation mode
      Set(coarseLevel, "P", finalP);

      // NOTE: EXPERIMENTAL
      if (Ptent->IsView("stridedMaps"))
        finalP->CreateView("stridedMaps", Ptent);

    } else {
      // prolongation factory is in restriction mode
      RCP<Matrix> R = Utils2::Transpose(*finalP, true); // use Utils2 -> specialization for double
      Set(coarseLevel, "R", R);

      // NOTE: EXPERIMENTAL
      if (Ptent->IsView("stridedMaps"))
        R->CreateView("stridedMaps", Ptent, true);
    }

    if (IsPrint(Statistics1)) {
      RCP<ParameterList> params = rcp(new ParameterList());
      params->set("printLoadBalancingInfo", true);
      params->set("printCommInfo",          true);
      GetOStream(Statistics1) << PerfUtils::PrintMatrixInfo(*finalP, (!restrictionMode_ ? "P" : "R"), params);
    }

  } //Build()
开发者ID:abhishek4747,项目名称:trilinos,代码行数:87,代码来源:MueLu_SaPFactory_def.hpp

示例11: CallDeclareInput

 //!
 virtual void CallDeclareInput(Level & requestedLevel) const {
     TEUCHOS_TEST_FOR_EXCEPTION(requestedLevel.GetPreviousLevel() == Teuchos::null, Exceptions::RuntimeError, "LevelID = " << requestedLevel.GetLevelID());
     DeclareInput(*requestedLevel.GetPreviousLevel(), requestedLevel);
 }
开发者ID:,项目名称:,代码行数:5,代码来源:

示例12: m

  void RepartitionFactory<Scalar, LocalOrdinal, GlobalOrdinal, Node>::Build(Level& currentLevel) const {
    FactoryMonitor m(*this, "Build", currentLevel);

    const Teuchos::ParameterList & pL = GetParameterList();
    // Access parameters here to make sure that we set the parameter entry flag to "used" even in case of short-circuit evaluation.
    // TODO (JG): I don't really know if we want to do this.
    const int    startLevel          = pL.get<int>   ("repartition: start level");
    const LO     minRowsPerProcessor = pL.get<LO>    ("repartition: min rows per proc");
    const double nonzeroImbalance    = pL.get<double>("repartition: max imbalance");
    const bool   remapPartitions     = pL.get<bool>  ("repartition: remap parts");

    // TODO: We only need a CrsGraph. This class does not have to be templated on Scalar types.
    RCP<Matrix> A = Get< RCP<Matrix> >(currentLevel, "A");

    // ======================================================================================================
    // Determine whether partitioning is needed
    // ======================================================================================================
    // NOTE: most tests include some global communication, which is why we currently only do tests until we make
    // a decision on whether to repartition. However, there is value in knowing how "close" we are to having to
    // rebalance an operator. So, it would probably be beneficial to do and report *all* tests.

    // Test1: skip repartitioning if current level is less than the specified minimum level for repartitioning
    if (currentLevel.GetLevelID() < startLevel) {
      GetOStream(Statistics0) << "Repartitioning?  NO:" <<
          "\n  current level = " << Teuchos::toString(currentLevel.GetLevelID()) <<
          ", first level where repartitioning can happen is " + Teuchos::toString(startLevel) << std::endl;

      Set<RCP<const Import> >(currentLevel, "Importer", Teuchos::null);
      return;
    }

    RCP<const Map> rowMap = A->getRowMap();

    // NOTE: Teuchos::MPIComm::duplicate() calls MPI_Bcast inside, so this is
    // a synchronization point. However, as we do MueLu_sumAll afterwards anyway, it
    // does not matter.
    RCP<const Teuchos::Comm<int> > origComm = rowMap->getComm();
    RCP<const Teuchos::Comm<int> > comm     = origComm->duplicate();

    // Test 2: check whether A is actually distributed, i.e. more than one processor owns part of A
    // TODO: this global communication can be avoided if we store the information with the matrix (it is known when matrix is created)
    // TODO: further improvements could be achieved when we use subcommunicator for the active set. Then we only need to check its size
    {
      int numActiveProcesses = 0;
      MueLu_sumAll(comm, Teuchos::as<int>((A->getNodeNumRows() > 0) ? 1 : 0), numActiveProcesses);

      if (numActiveProcesses == 1) {
        GetOStream(Statistics0) << "Repartitioning?  NO:" <<
            "\n  # processes with rows = " << Teuchos::toString(numActiveProcesses) << std::endl;

        Set<RCP<const Import> >(currentLevel, "Importer", Teuchos::null);
        return;
      }
    }

    bool test3 = false, test4 = false;
    std::string msg3, msg4;

    // Test3: check whether number of rows on any processor satisfies the minimum number of rows requirement
    // NOTE: Test2 ensures that repartitionning is not done when there is only one processor (it may or may not satisfy Test3)
    if (minRowsPerProcessor > 0) {
      LO numMyRows = Teuchos::as<LO>(A->getNodeNumRows()), minNumRows, LOMAX = Teuchos::OrdinalTraits<LO>::max();
      LO haveFewRows = (numMyRows < minRowsPerProcessor ? 1 : 0), numWithFewRows = 0;
      MueLu_sumAll(comm, haveFewRows, numWithFewRows);
      MueLu_minAll(comm, (numMyRows > 0 ? numMyRows : LOMAX), minNumRows);

      // TODO: we could change it to repartition only if the number of processors with numRows < minNumRows is larger than some
      // percentage of the total number. This way, we won't repartition if 2 out of 1000 processors don't have enough elements.
      // I'm thinking maybe 20% threshold. To implement, simply add " && numWithFewRows < .2*numProcs" to the if statement.
      if (numWithFewRows > 0)
        test3 = true;

      msg3 = "\n  min # rows per proc = " + Teuchos::toString(minNumRows) + ", min allowable = " + Teuchos::toString(minRowsPerProcessor);
    }

    // Test4: check whether the balance in the number of nonzeros per processor is greater than threshold
    if (!test3) {
      GO minNnz, maxNnz, numMyNnz = Teuchos::as<GO>(A->getNodeNumEntries());
      MueLu_maxAll(comm, numMyNnz,                           maxNnz);
      MueLu_minAll(comm, (numMyNnz > 0 ? numMyNnz : maxNnz), minNnz); // min nnz over all active processors
      double imbalance = Teuchos::as<double>(maxNnz)/minNnz;

      if (imbalance > nonzeroImbalance)
        test4 = true;

      msg4 = "\n  nonzero imbalance = " + Teuchos::toString(imbalance) + ", max allowable = " + Teuchos::toString(nonzeroImbalance);
    }

    if (!test3 && !test4) {
      GetOStream(Statistics0) << "Repartitioning?  NO:" << msg3 + msg4 << std::endl;

      Set<RCP<const Import> >(currentLevel, "Importer", Teuchos::null);
      return;
    }

    GetOStream(Statistics0) << "Repartitioning? YES:" << msg3 + msg4 << std::endl;

    GO                     indexBase = rowMap->getIndexBase();
    Xpetra::UnderlyingLib  lib       = rowMap->lib();
    int myRank   = comm->getRank();
//.........这里部分代码省略.........
开发者ID:Russell-Jones-OxPhys,项目名称:Trilinos,代码行数:101,代码来源:MueLu_RepartitionFactory_def.hpp

示例13: m

  void RebalanceTransferFactory<Scalar, LocalOrdinal, GlobalOrdinal, Node, LocalMatOps>::Build(Level& fineLevel, Level& coarseLevel) const {
    FactoryMonitor m(*this, "Build", coarseLevel);

    const ParameterList& pL = GetParameterList();

    int implicit   = !pL.get<bool>("repartition: rebalance P and R");
    int writeStart = pL.get<int> ("write start");
    int writeEnd   = pL.get<int> ("write end");

    if (writeStart == 0 && fineLevel.GetLevelID() == 0 && writeStart <= writeEnd && IsAvailable(fineLevel, "Coordinates")) {
      std::string fileName = "coordinates_level_0.m";
      RCP<MultiVector> fineCoords = fineLevel.Get< RCP<MultiVector> >("Coordinates");
      if (fineCoords != Teuchos::null)
        Utils::Write(fileName, *fineCoords);
    }

    RCP<const Import> importer = Get<RCP<const Import> >(coarseLevel, "Importer");
    if (implicit) {
      // Save the importer, we'll need it for solve
      coarseLevel.Set("Importer", importer, NoFactory::get());
    }

    RCP<ParameterList> params = rcp(new ParameterList());;
    params->set("printLoadBalancingInfo", true);
    params->set("printCommInfo",          true);

    std::string transferType = pL.get<std::string>("type");
    if (transferType == "Interpolation") {
      RCP<Matrix> originalP = Get< RCP<Matrix> >(coarseLevel, "P");

      {
        // This line must be after the Get call
        SubFactoryMonitor m1(*this, "Rebalancing prolongator", coarseLevel);

        if (implicit || importer.is_null()) {
          GetOStream(Runtime0) << "Using original prolongator" << std::endl;
          Set(coarseLevel, "P", originalP);

        } else {
          // P is the transfer operator from the coarse grid to the fine grid.
          // P must transfer the data from the newly reordered coarse A to the
          // (unchanged) fine A.  This means that the domain map (coarse) of P
          // must be changed according to the new partition. The range map
          // (fine) is kept unchanged.
          //
          // The domain map of P must match the range map of R.  See also note
          // below about domain/range map of R and its implications for P.
          //
          // To change the domain map of P, P needs to be fillCompleted again
          // with the new domain map.  To achieve this, P is copied into a new
          // matrix that is not fill-completed.  The doImport() operation is
          // just used here to make a copy of P: the importer is trivial and
          // there is no data movement involved.  The reordering actually
          // happens during the fillComplete() with domainMap == importer->getTargetMap().
          RCP<Matrix> rebalancedP = originalP;
          RCP<const CrsMatrixWrap> crsOp = rcp_dynamic_cast<const CrsMatrixWrap>(originalP);
          TEUCHOS_TEST_FOR_EXCEPTION(crsOp == Teuchos::null, Exceptions::BadCast, "Cast from Xpetra::Matrix to Xpetra::CrsMatrixWrap failed");

          RCP<CrsMatrix> rebalancedP2 = crsOp->getCrsMatrix();
          TEUCHOS_TEST_FOR_EXCEPTION(rebalancedP2 == Teuchos::null, std::runtime_error, "Xpetra::CrsMatrixWrap doesn't have a CrsMatrix");

          {
            SubFactoryMonitor subM(*this, "Rebalancing prolongator -- fast map replacement", coarseLevel);

            RCP<const Import> newImporter = ImportFactory::Build(importer->getTargetMap(), rebalancedP->getColMap());
            rebalancedP2->replaceDomainMapAndImporter(importer->getTargetMap(), newImporter);
          }

          ///////////////////////// EXPERIMENTAL
          // TODO FIXME somehow we have to transfer the striding information of the permuted domain/range maps.
          // That is probably something for an external permutation factory
          //   if (originalP->IsView("stridedMaps"))
          //     rebalancedP->CreateView("stridedMaps", originalP);
          ///////////////////////// EXPERIMENTAL

          Set(coarseLevel, "P", rebalancedP);

          if (IsPrint(Statistics1))
            GetOStream(Statistics1) << PerfUtils::PrintMatrixInfo(*rebalancedP, "P (rebalanced)", params);
        }
      }

      if (importer.is_null()) {
        if (IsAvailable(coarseLevel, "Nullspace"))
          Set(coarseLevel, "Nullspace", Get<RCP<MultiVector> >(coarseLevel, "Nullspace"));

        if (pL.isParameter("Coordinates") && pL.get< RCP<const FactoryBase> >("Coordinates") != Teuchos::null)
          if (IsAvailable(coarseLevel, "Coordinates"))
            Set(coarseLevel, "Coordinates", Get< RCP<MultiVector> >(coarseLevel, "Coordinates"));

        return;
      }

      if (pL.isParameter("Coordinates") &&
          pL.get< RCP<const FactoryBase> >("Coordinates") != Teuchos::null &&
          IsAvailable(coarseLevel, "Coordinates")) {
        RCP<MultiVector> coords = Get<RCP<MultiVector> >(coarseLevel, "Coordinates");

        // This line must be after the Get call
        SubFactoryMonitor subM(*this, "Rebalancing coordinates", coarseLevel);
//.........这里部分代码省略.........
开发者ID:rorypeck,项目名称:trilinos,代码行数:101,代码来源:MueLu_RebalanceTransferFactory_def.hpp

示例14: Input

  void NullspacePresmoothFactory<Scalar, LocalOrdinal, GlobalOrdinal, Node, LocalMatOps>::DeclareInput(Level &currentLevel) const {
    Input(currentLevel, "Nullspace");

    if (currentLevel.GetLevelID() == 0)
      Input(currentLevel, "A");
  }
开发者ID:gitter-badger,项目名称:quinoa,代码行数:6,代码来源:MueLu_NullspacePresmoothFactory_def.hpp

示例15: CallBuild

    //!
    virtual void CallBuild(Level & requestedLevel) const {
#ifdef HAVE_MUELU_DEBUG
        TEUCHOS_TEST_FOR_EXCEPTION((multipleCallCheck_ == ENABLED) && (multipleCallCheckGlobal_ == ENABLED) && (lastLevel_ == &requestedLevel),
                                   Exceptions::RuntimeError,
                                   this->ShortClassName() << "::Build() called twice for the same level (levelID=" << requestedLevel.GetLevelID()
                                   << "). This is likely due to a configuration error.");
        if (multipleCallCheck_ == FIRSTCALL) multipleCallCheck_ = ENABLED;
        lastLevel_ = &requestedLevel;
#endif

        TEUCHOS_TEST_FOR_EXCEPTION(requestedLevel.GetPreviousLevel() == Teuchos::null, Exceptions::RuntimeError, "LevelID = " << requestedLevel.GetLevelID());
        Build(*requestedLevel.GetPreviousLevel(), requestedLevel);
    }
开发者ID:,项目名称:,代码行数:14,代码来源:


注:本文中的Level::GetLevelID方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。