本文整理汇总了C++中Joint::getID方法的典型用法代码示例。如果您正苦于以下问题:C++ Joint::getID方法的具体用法?C++ Joint::getID怎么用?C++ Joint::getID使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Joint
的用法示例。
在下文中一共展示了Joint::getID方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: computeJointTorquesEquivalentToForce
/**
This method is used to compute the torques that mimick the effect of applying a force on
a rigid body, at some point. It works best if the end joint is connected to something that
is grounded, otherwise (I think) this is just an approximation.
This function works by making use of the formula:
t = J' * f, where J' is dp/dq, where p is the position where the force is applied, q is
'sorta' the relative orientation between links. It makes the connection between the velocity
of the point p and the relative angular velocities at each joint. Here's an example of how to compute it.
Assume: p = pBase + R1 * v1 + R2 * v2, where R1 is the matrix from link 1 to whatever pBase is specified in,
and R2 is the rotation matrix from link 2 to whatever pBase is specified in, v1 is the point from link 1's
origin to link 2's origin (in link 1 coordinates), and v2 is the vector from origin of link 2 to p
(in link 2 coordinates).
dp/dt = d(R1 * v1)/dt + d(R2 * v2)/dt = d R1/dt * v1 + d R2/dt * v2, and dR/dt = wx * R, where wx is
the cross product matrix associated with the angular velocity w
so dp/dt = w1x * R1 * v1 + w2x * R2 * v2, and w2 = w1 + wRel
= [-(R1*v1 + R2*v2)x -(R2*v1)x ] [w1 wRel]', so the first matrix is the Jacobian.
The first entry is the cross product matrix of the vector (in 'global' coordinates) from the
origin of link 1 to p, and the second entry is the vector (in 'global' coordinates) from
the origin of link 2 to p (and therein lies the general way of writing this).
*/
void VirtualModelController::computeJointTorquesEquivalentToForce(Joint* start, const Point3d& pLocal, const Vector3d& fGlobal, Joint* end){
//starting from the start joint, going towards the end joint, get the origin of each link, in world coordinates,
//and compute the vector to the global coordinates of pLocal.
Joint* currentJoint = start;
Vector3d tmpV;
Point3d pGlobal = start->getChild()->getWorldCoordinates(pLocal);
while (currentJoint != end){
if (currentJoint == NULL)
throwError("VirtualModelController::computeJointTorquesEquivalentToForce --> end was not a parent of start...");
tmpV = Vector3d(currentJoint->getParent()->getWorldCoordinates(currentJoint->getParentJointPosition()), pGlobal);
Vector3d tmpT = tmpV.crossProductWith(fGlobal);
torques[currentJoint->getID()] -= tmpT;
currentJoint = currentJoint->getParent()->getParentJoint();
}
//and we just have to do it once more for the end joint, if it's not NULL
if (end != NULL){
tmpV = Vector3d(currentJoint->getParent()->getWorldCoordinates(currentJoint->getParentJointPosition()), pGlobal);
torques[currentJoint->getID()] -= tmpV.crossProductWith(fGlobal);
}
}
示例2: runBWDConstraint
void UpperArmConstraint::runBWDConstraint()
{
if(!(param.direction & BWD))
return;
Joint* jointToConstrain = joint->getBWDJoint() ;
if ( NULL == jointToConstrain )
return ;
//FIND ROTATION(NON-TWISTED BONE)
Position Pjoint_BWD = joint->getBWDJoint()->getPosition();
Position Pjoint_this = joint->getPosition();
Position Pjoint_FWD = joint->getFWDJoint()->getPosition();
Vector3D b_BWD = Vector3D((Pjoint_BWD-Pjoint_this).getX(), (Pjoint_BWD-Pjoint_this).getY(), (Pjoint_BWD-Pjoint_this).getZ());
Vector3D b_FWD = Vector3D((Pjoint_this-Pjoint_FWD).getX(), (Pjoint_this-Pjoint_FWD).getY(), (Pjoint_this-Pjoint_FWD).getZ());
Quaternion Q_FWD_2_BWD = Quaternion::v2q(b_FWD, b_BWD);
Quaternion QW_BWD_ZeroTwist = Q_FWD_2_BWD * (joint->getQwFWD()) ;
//GET ROTATED BONE
Vector3D Initbone_BWD = joint->getFabrik()->getInitBones() [joint->getID()] ;
Vector3D Vbone_BWD = Quaternion::rotVbyQ ( Initbone_BWD, QW_BWD_ZeroTwist ) ;
Vector3D P_BWD = Vector3D ( joint->getPosition() ) + Vbone_BWD ;
jointToConstrain->setPosition ( P_BWD ) ;
//USE LowerArm TO COMPUTE FullTwist
Vector3D Initbone_BWDBWD = joint->getFabrik()->getInitBones() [jointToConstrain->getID()] ;
Vector3D b_BWDBWD = Quaternion::rotVbyQ ( Initbone_BWDBWD, param.q) ;
Float Dot = Vector3D::Dot(Vbone_BWD.getNormalized(), b_BWDBWD.getNormalized());
Quaternion QW_BWD = QW_BWD_ZeroTwist;
//TwistAngle
if( Dot > 0.00000001)
{
Quaternion Q_BWDBWD_2_BWD = Quaternion::v2q(b_BWDBWD, Vbone_BWD);
Quaternion QW_BWD_FullTwist = Q_BWDBWD_2_BWD * param.q ;
float LowerArmWeight = Dot * 0.5 ;
QW_BWD = Quaternion::slerp1(QW_BWD_ZeroTwist, QW_BWD_FullTwist, (1-LowerArmWeight));
Vector3D V_zeroTwist = Quaternion::rotVbyQ(Initbone_BWD.getNormalized(), QW_BWD_ZeroTwist);
Vector3D V_fullTwist = Quaternion::rotVbyQ(Initbone_BWD.getNormalized(), QW_BWD_FullTwist);
// printf("V0: %f %f %f \t V1: %f %f %f \n", V_zeroTwist.getX(),V_zeroTwist.getY(),V_zeroTwist.getZ(),V_fullTwist.getX(),V_fullTwist.getY(),V_fullTwist.getZ());
}
else
{
QW_BWD = QW_BWD_ZeroTwist;
}
joint->setQwBWD(QW_BWD);
jointToConstrain->setQwFWD(QW_BWD);
return;
}