当前位置: 首页>>代码示例>>C++>>正文


C++ Environment::act方法代码示例

本文整理汇总了C++中Environment::act方法的典型用法代码示例。如果您正苦于以下问题:C++ Environment::act方法的具体用法?C++ Environment::act怎么用?C++ Environment::act使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在Environment的用法示例。


在下文中一共展示了Environment::act方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: evaluatePolicy

double HumanAgent::evaluatePolicy(Environment<bool>& env){
#ifdef __USE_SDL
	Action action;
	int reward = 0;
    int totalReward = 0;
	int cumulativeReward = 0;
	
	//Repeat (for each episode):
	for(int episode = 0; episode < numEpisodesToEval; episode++){
		int step = 0;
		while(!env.game_over() && step < maxStepsInEpisode) {
			action = receiveAction();
            //If one wants to save trajectories, this is where the trajectory is saved:
            if(toSaveTrajectory){
                saveTrajectory(action);
            }
			reward = env.act(action);
			cumulativeReward += reward;
			step++;
		}
		printf("Episode %d, Cumulative Reward: %d\n", episode + 1, cumulativeReward);
        totalReward += cumulativeReward;
		cumulativeReward = 0;
		env.reset_game(); //Start the game again when the episode is over
	}
    return double(totalReward)/numEpisodesToEval;
}
开发者ID:mcmachado,项目名称:ALEResearch,代码行数:27,代码来源:HumanAgent.cpp

示例2: evaluatePolicy

double RandomAgent::evaluatePolicy(Environment<bool>& env){
	int reward = 0;
	int totalReward = 0;
	int cumulativeReward = 0;
	int numActions;
	ActionVect actions;
	//Check if one wants to sample from all possible actions or only the valid ones:
	if(useMinActions){
		actions = env.getMinimalActionSet();
	}
	else{
		actions = env.getLegalActionSet();
	}
	numActions = actions.size();
	printf("Number of Actions: %d\n\n", numActions);
	//Repeat (for each episode):
	for(int episode = 0; episode < numEpisodesToEval; episode++){
		int step = 0;
		while(!env.game_over() && step < maxStepsInEpisode) {
			reward = env.act(actions[rand()%numActions]);
			cumulativeReward += reward;
			step++;
		}
		printf("Episode %d, Cumulative Reward: %d\n", episode + 1, cumulativeReward);
		totalReward += cumulativeReward;
		cumulativeReward = 0;
		env.reset_game(); //Start the game again when the episode is over
	}
	return double(totalReward)/numEpisodesToEval;
}
开发者ID:mcmachado,项目名称:ALEResearch,代码行数:30,代码来源:RandomAgent.cpp


注:本文中的Environment::act方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。