本文整理汇总了C++中APInt::zext方法的典型用法代码示例。如果您正苦于以下问题:C++ APInt::zext方法的具体用法?C++ APInt::zext怎么用?C++ APInt::zext使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类APInt
的用法示例。
在下文中一共展示了APInt::zext方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: zeroExtend
/// zeroExtend - Return a new range in the specified integer type, which must
/// be strictly larger than the current type. The returned range will
/// correspond to the possible range of values as if the source range had been
/// zero extended.
ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
unsigned SrcTySize = getBitWidth();
assert(SrcTySize < DstTySize && "Not a value extension");
if (isFullSet())
// Change a source full set into [0, 1 << 8*numbytes)
return ConstantRange(APInt(DstTySize,0), APInt(DstTySize,1).shl(SrcTySize));
APInt L = Lower; L.zext(DstTySize);
APInt U = Upper; U.zext(DstTySize);
return ConstantRange(L, U);
}
示例2: constantFoldCast
APInt swift::constantFoldCast(APInt val, const BuiltinInfo &BI) {
// Get the cast result.
Type SrcTy = BI.Types[0];
Type DestTy = BI.Types.size() == 2 ? BI.Types[1] : Type();
uint32_t SrcBitWidth =
SrcTy->castTo<BuiltinIntegerType>()->getGreatestWidth();
uint32_t DestBitWidth =
DestTy->castTo<BuiltinIntegerType>()->getGreatestWidth();
APInt CastResV;
if (SrcBitWidth == DestBitWidth) {
return val;
} else switch (BI.ID) {
default : llvm_unreachable("Invalid case.");
case BuiltinValueKind::Trunc:
case BuiltinValueKind::TruncOrBitCast:
return val.trunc(DestBitWidth);
case BuiltinValueKind::ZExt:
case BuiltinValueKind::ZExtOrBitCast:
return val.zext(DestBitWidth);
break;
case BuiltinValueKind::SExt:
case BuiltinValueKind::SExtOrBitCast:
return val.sext(DestBitWidth);
}
}
示例3: MultiplyOverflows
/// MultiplyOverflows - True if the multiply can not be expressed in an int
/// this size.
static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
uint32_t W = C1->getBitWidth();
APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
if (sign) {
LHSExt = LHSExt.sext(W * 2);
RHSExt = RHSExt.sext(W * 2);
} else {
LHSExt = LHSExt.zext(W * 2);
RHSExt = RHSExt.zext(W * 2);
}
APInt MulExt = LHSExt * RHSExt;
if (!sign)
return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
return MulExt.slt(Min) || MulExt.sgt(Max);
}
示例4: determineLiveOperandBits
//.........这里部分代码省略.........
// If the shift is nuw/nsw, then the high bits are not dead
// (because we've promised that they *must* be zero).
const ShlOperator *S = cast<ShlOperator>(UserI);
if (S->hasNoSignedWrap())
AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
else if (S->hasNoUnsignedWrap())
AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
}
break;
case Instruction::LShr:
if (OperandNo == 0)
if (ConstantInt *CI =
dyn_cast<ConstantInt>(UserI->getOperand(1))) {
uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
AB = AOut.shl(ShiftAmt);
// If the shift is exact, then the low bits are not dead
// (they must be zero).
if (cast<LShrOperator>(UserI)->isExact())
AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
}
break;
case Instruction::AShr:
if (OperandNo == 0)
if (ConstantInt *CI =
dyn_cast<ConstantInt>(UserI->getOperand(1))) {
uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
AB = AOut.shl(ShiftAmt);
// Because the high input bit is replicated into the
// high-order bits of the result, if we need any of those
// bits, then we must keep the highest input bit.
if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
.getBoolValue())
AB.setBit(BitWidth-1);
// If the shift is exact, then the low bits are not dead
// (they must be zero).
if (cast<AShrOperator>(UserI)->isExact())
AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
}
break;
case Instruction::And:
AB = AOut;
// For bits that are known zero, the corresponding bits in the
// other operand are dead (unless they're both zero, in which
// case they can't both be dead, so just mark the LHS bits as
// dead).
if (OperandNo == 0) {
ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
AB &= ~KnownZero2;
} else {
if (!isa<Instruction>(UserI->getOperand(0)))
ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
AB &= ~(KnownZero & ~KnownZero2);
}
break;
case Instruction::Or:
AB = AOut;
// For bits that are known one, the corresponding bits in the
// other operand are dead (unless they're both one, in which
// case they can't both be dead, so just mark the LHS bits as
// dead).
if (OperandNo == 0) {
ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
AB &= ~KnownOne2;
} else {
if (!isa<Instruction>(UserI->getOperand(0)))
ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
AB &= ~(KnownOne & ~KnownOne2);
}
break;
case Instruction::Xor:
case Instruction::PHI:
AB = AOut;
break;
case Instruction::Trunc:
AB = AOut.zext(BitWidth);
break;
case Instruction::ZExt:
AB = AOut.trunc(BitWidth);
break;
case Instruction::SExt:
AB = AOut.trunc(BitWidth);
// Because the high input bit is replicated into the
// high-order bits of the result, if we need any of those
// bits, then we must keep the highest input bit.
if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
AOut.getBitWidth() - BitWidth))
.getBoolValue())
AB.setBit(BitWidth-1);
break;
case Instruction::Select:
if (OperandNo != 0)
AB = AOut;
break;
}
}
示例5: ComputeMaskedBits
//.........这里部分代码省略.........
}
case Instruction::Select:
ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1);
ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD,
Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Only known if known in both the LHS and RHS.
KnownOne &= KnownOne2;
KnownZero &= KnownZero2;
return;
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::SIToFP:
case Instruction::UIToFP:
return; // Can't work with floating point.
case Instruction::PtrToInt:
case Instruction::IntToPtr:
// We can't handle these if we don't know the pointer size.
if (!TD) return;
// FALL THROUGH and handle them the same as zext/trunc.
case Instruction::ZExt:
case Instruction::Trunc: {
// Note that we handle pointer operands here because of inttoptr/ptrtoint
// which fall through here.
const Type *SrcTy = I->getOperand(0)->getType();
unsigned SrcBitWidth = TD ?
TD->getTypeSizeInBits(SrcTy) :
SrcTy->getPrimitiveSizeInBits();
APInt MaskIn(Mask);
MaskIn.zextOrTrunc(SrcBitWidth);
KnownZero.zextOrTrunc(SrcBitWidth);
KnownOne.zextOrTrunc(SrcBitWidth);
ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
Depth+1);
KnownZero.zextOrTrunc(BitWidth);
KnownOne.zextOrTrunc(BitWidth);
// Any top bits are known to be zero.
if (BitWidth > SrcBitWidth)
KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
return;
}
case Instruction::BitCast: {
const Type *SrcTy = I->getOperand(0)->getType();
if (SrcTy->isInteger() || isa<PointerType>(SrcTy)) {
ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD,
Depth+1);
return;
}
break;
}
case Instruction::SExt: {
// Compute the bits in the result that are not present in the input.
const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
unsigned SrcBitWidth = SrcTy->getBitWidth();
APInt MaskIn(Mask);
MaskIn.trunc(SrcBitWidth);
KnownZero.trunc(SrcBitWidth);
KnownOne.trunc(SrcBitWidth);
ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
示例6: unknownResult
SymbolicValue
ConstExprFunctionState::computeConstantValueBuiltin(BuiltinInst *inst) {
const BuiltinInfo &builtin = inst->getBuiltinInfo();
// Handle various cases in groups.
auto unknownResult = [&]() -> SymbolicValue {
return evaluator.getUnknown(SILValue(inst), UnknownReason::Default);
};
// Unary operations.
if (inst->getNumOperands() == 1) {
auto operand = getConstantValue(inst->getOperand(0));
// TODO: Could add a "value used here" sort of diagnostic.
if (!operand.isConstant())
return operand;
// TODO: SUCheckedConversion/USCheckedConversion
// Implement support for s_to_s_checked_trunc_Int2048_Int64 and other
// checking integer truncates. These produce a tuple of the result value
// and an overflow bit.
//
// TODO: We can/should diagnose statically detectable integer overflow
// errors and subsume the ConstantFolding.cpp mandatory SIL pass.
auto IntCheckedTruncFn = [&](bool srcSigned,
bool dstSigned) -> SymbolicValue {
if (operand.getKind() != SymbolicValue::Integer)
return unknownResult();
auto operandVal = operand.getIntegerValue();
uint32_t srcBitWidth = operandVal.getBitWidth();
auto dstBitWidth =
builtin.Types[1]->castTo<BuiltinIntegerType>()->getGreatestWidth();
APInt result = operandVal.trunc(dstBitWidth);
// Compute the overflow by re-extending the value back to its source and
// checking for loss of value.
APInt reextended =
dstSigned ? result.sext(srcBitWidth) : result.zext(srcBitWidth);
bool overflowed = (operandVal != reextended);
if (!srcSigned && dstSigned)
overflowed |= result.isSignBitSet();
if (overflowed)
return evaluator.getUnknown(SILValue(inst), UnknownReason::Overflow);
auto &astContext = evaluator.getASTContext();
// Build the Symbolic value result for our truncated value.
return SymbolicValue::getAggregate(
{SymbolicValue::getInteger(result, astContext),
SymbolicValue::getInteger(APInt(1, overflowed), astContext)},
astContext);
};
switch (builtin.ID) {
default:
break;
case BuiltinValueKind::SToSCheckedTrunc:
return IntCheckedTruncFn(true, true);
case BuiltinValueKind::UToSCheckedTrunc:
return IntCheckedTruncFn(false, true);
case BuiltinValueKind::SToUCheckedTrunc:
return IntCheckedTruncFn(true, false);
case BuiltinValueKind::UToUCheckedTrunc:
return IntCheckedTruncFn(false, false);
case BuiltinValueKind::Trunc:
case BuiltinValueKind::TruncOrBitCast:
case BuiltinValueKind::ZExt:
case BuiltinValueKind::ZExtOrBitCast:
case BuiltinValueKind::SExt:
case BuiltinValueKind::SExtOrBitCast: {
if (operand.getKind() != SymbolicValue::Integer)
return unknownResult();
unsigned destBitWidth =
inst->getType().castTo<BuiltinIntegerType>()->getGreatestWidth();
APInt result = operand.getIntegerValue();
if (result.getBitWidth() != destBitWidth) {
switch (builtin.ID) {
default:
assert(0 && "Unknown case");
case BuiltinValueKind::Trunc:
case BuiltinValueKind::TruncOrBitCast:
result = result.trunc(destBitWidth);
break;
case BuiltinValueKind::ZExt:
case BuiltinValueKind::ZExtOrBitCast:
result = result.zext(destBitWidth);
break;
case BuiltinValueKind::SExt:
case BuiltinValueKind::SExtOrBitCast:
result = result.sext(destBitWidth);
break;
}
}
return SymbolicValue::getInteger(result, evaluator.getASTContext());
//.........这里部分代码省略.........
示例7: APInt
APInt
swift::Compress::EncodeStringAsNumber(StringRef In, EncodingKind Kind) {
// Allocate enough space for the first character plus one bit which is the
// stop bit for variable length encoding.
unsigned BW = (1 + Huffman::LongestEncodingLength);
APInt num = APInt(BW, 0);
// We set the high bit to zero in order to support encoding
// of chars that start with zero (for variable length encoding).
if (Kind == EncodingKind::Variable) {
num = ++num;
}
// Encode variable-length strings.
if (Kind == EncodingKind::Variable) {
size_t num_bits = 0;
size_t bits = 0;
// Append the characters in the string in reverse. This will allow
// us to decode by appending to a string and not prepending.
for (int i = In.size() - 1; i >= 0; i--) {
char ch = In[i];
// The local variables 'bits' and 'num_bits' are used as a small
// bitstream. Keep accumulating bits into them until they overflow.
// At that point move them into the APInt.
uint64_t local_bits;
uint64_t local_num_bits;
// Find the huffman encoding of the character.
Huffman::variable_encode(local_bits, local_num_bits, ch);
// Add the encoded character into our bitstream.
num_bits += local_num_bits;
bits = (bits << local_num_bits) + local_bits;
// Check if there is enough room for another word. If not, flush
// the local bitstream into the APInt.
if (num_bits >= (64 - Huffman::LongestEncodingLength)) {
// Make room for the new bits and add the bits.
num = num.zext(num.getBitWidth() + num_bits);
num = num.shl(num_bits); num = num + bits;
num_bits = 0; bits = 0;
}
}
// Flush the local bitstream into the APInt number.
if (num_bits) {
num = num.zext(num.getBitWidth() + num_bits);
num = num.shl(num_bits); num = num + bits;
num_bits = 0; bits = 0;
}
// Make sure that we have a minimal word size to be able to perform
// calculations on our alphabet.
return num.zextOrSelf(std::max(64u, num.getBitWidth()));
}
// Encode fixed width strings.
for (int i = In.size() - 1; i >= 0; i--) {
char ch = In[i];
// Extend the number and create room for encoding another character.
unsigned MinBits = num.getActiveBits() + Huffman::LongestEncodingLength;
num = num.zextOrTrunc(std::max(64u, MinBits));
EncodeFixedWidth(num, ch);
}
return num;
}
示例8: codegenForVector
isl_set *LoopDomain = isl_set_copy(isl_set_from_cloog_domain(For->domain));
int NumberOfIterations = polly::getNumberOfIterations(LoopDomain);
if (NumberOfIterations == -1)
return -1;
return NumberOfIterations / isl_int_get_si(For->stride) + 1;
}
void ClastStmtCodeGen::codegenForVector(const clast_for *F) {
DEBUG(dbgs() << "Vectorizing loop '" << F->iterator << "'\n";);
int VectorWidth = getNumberOfIterations(F);
Value *LB = ExpGen.codegen(F->LB, getIntPtrTy());
APInt Stride = APInt_from_MPZ(F->stride);
IntegerType *LoopIVType = dyn_cast<IntegerType>(LB->getType());
Stride = Stride.zext(LoopIVType->getBitWidth());
Value *StrideValue = ConstantInt::get(LoopIVType, Stride);
std::vector<Value *> IVS(VectorWidth);
IVS[0] = LB;
for (int i = 1; i < VectorWidth; i++)
IVS[i] = Builder.CreateAdd(IVS[i - 1], StrideValue, "p_vector_iv");
isl_set *Domain = isl_set_from_cloog_domain(F->domain);
// Add loop iv to symbols.
ClastVars[F->iterator] = LB;
const clast_stmt *Stmt = F->body;
示例9: getAsInteger
bool StringRef::getAsInteger(unsigned Radix, APInt &Result) const {
StringRef Str = *this;
// Autosense radix if not specified.
if (Radix == 0)
Radix = GetAutoSenseRadix(Str);
assert(Radix > 1 && Radix <= 36);
// Empty strings (after the radix autosense) are invalid.
if (Str.empty()) return true;
// Skip leading zeroes. This can be a significant improvement if
// it means we don't need > 64 bits.
while (!Str.empty() && Str.front() == '0')
Str = Str.substr(1);
// If it was nothing but zeroes....
if (Str.empty()) {
Result = APInt(64, 0);
return false;
}
// (Over-)estimate the required number of bits.
unsigned Log2Radix = 0;
while ((1U << Log2Radix) < Radix) Log2Radix++;
bool IsPowerOf2Radix = ((1U << Log2Radix) == Radix);
unsigned BitWidth = Log2Radix * Str.size();
if (BitWidth < Result.getBitWidth())
BitWidth = Result.getBitWidth(); // don't shrink the result
else
Result = Result.zext(BitWidth);
APInt RadixAP, CharAP; // unused unless !IsPowerOf2Radix
if (!IsPowerOf2Radix) {
// These must have the same bit-width as Result.
RadixAP = APInt(BitWidth, Radix);
CharAP = APInt(BitWidth, 0);
}
// Parse all the bytes of the string given this radix.
Result = 0;
while (!Str.empty()) {
unsigned CharVal;
if (Str[0] >= '0' && Str[0] <= '9')
CharVal = Str[0]-'0';
else if (Str[0] >= 'a' && Str[0] <= 'z')
CharVal = Str[0]-'a'+10;
else if (Str[0] >= 'A' && Str[0] <= 'Z')
CharVal = Str[0]-'A'+10;
else
return true;
// If the parsed value is larger than the integer radix, the string is
// invalid.
if (CharVal >= Radix)
return true;
// Add in this character.
if (IsPowerOf2Radix) {
Result <<= Log2Radix;
Result |= CharVal;
} else {
Result *= RadixAP;
CharAP = CharVal;
Result += CharAP;
}
Str = Str.substr(1);
}
return false;
}
示例10: decomposeBitTestICmp
bool llvm::decomposeBitTestICmp(Value *LHS, Value *RHS,
CmpInst::Predicate &Pred,
Value *&X, APInt &Mask, bool LookThruTrunc) {
using namespace PatternMatch;
const APInt *C;
if (!match(RHS, m_APInt(C)))
return false;
switch (Pred) {
default:
return false;
case ICmpInst::ICMP_SLT:
// X < 0 is equivalent to (X & SignMask) != 0.
if (!C->isNullValue())
return false;
Mask = APInt::getSignMask(C->getBitWidth());
Pred = ICmpInst::ICMP_NE;
break;
case ICmpInst::ICMP_SLE:
// X <= -1 is equivalent to (X & SignMask) != 0.
if (!C->isAllOnesValue())
return false;
Mask = APInt::getSignMask(C->getBitWidth());
Pred = ICmpInst::ICMP_NE;
break;
case ICmpInst::ICMP_SGT:
// X > -1 is equivalent to (X & SignMask) == 0.
if (!C->isAllOnesValue())
return false;
Mask = APInt::getSignMask(C->getBitWidth());
Pred = ICmpInst::ICMP_EQ;
break;
case ICmpInst::ICMP_SGE:
// X >= 0 is equivalent to (X & SignMask) == 0.
if (!C->isNullValue())
return false;
Mask = APInt::getSignMask(C->getBitWidth());
Pred = ICmpInst::ICMP_EQ;
break;
case ICmpInst::ICMP_ULT:
// X <u 2^n is equivalent to (X & ~(2^n-1)) == 0.
if (!C->isPowerOf2())
return false;
Mask = -*C;
Pred = ICmpInst::ICMP_EQ;
break;
case ICmpInst::ICMP_ULE:
// X <=u 2^n-1 is equivalent to (X & ~(2^n-1)) == 0.
if (!(*C + 1).isPowerOf2())
return false;
Mask = ~*C;
Pred = ICmpInst::ICMP_EQ;
break;
case ICmpInst::ICMP_UGT:
// X >u 2^n-1 is equivalent to (X & ~(2^n-1)) != 0.
if (!(*C + 1).isPowerOf2())
return false;
Mask = ~*C;
Pred = ICmpInst::ICMP_NE;
break;
case ICmpInst::ICMP_UGE:
// X >=u 2^n is equivalent to (X & ~(2^n-1)) != 0.
if (!C->isPowerOf2())
return false;
Mask = -*C;
Pred = ICmpInst::ICMP_NE;
break;
}
if (LookThruTrunc && match(LHS, m_Trunc(m_Value(X)))) {
Mask = Mask.zext(X->getType()->getScalarSizeInBits());
} else {
X = LHS;
}
return true;
}
示例11: constructResultWithOverflowTuple
static SILInstruction *
constantFoldAndCheckIntegerConversions(BuiltinInst *BI,
const BuiltinInfo &Builtin,
Optional<bool> &ResultsInError) {
assert(Builtin.ID == BuiltinValueKind::SToSCheckedTrunc ||
Builtin.ID == BuiltinValueKind::UToUCheckedTrunc ||
Builtin.ID == BuiltinValueKind::SToUCheckedTrunc ||
Builtin.ID == BuiltinValueKind::UToSCheckedTrunc ||
Builtin.ID == BuiltinValueKind::SUCheckedConversion ||
Builtin.ID == BuiltinValueKind::USCheckedConversion);
// Check if we are converting a constant integer.
OperandValueArrayRef Args = BI->getArguments();
auto *V = dyn_cast<IntegerLiteralInst>(Args[0]);
if (!V)
return nullptr;
APInt SrcVal = V->getValue();
// Get source type and bit width.
Type SrcTy = Builtin.Types[0];
uint32_t SrcBitWidth =
Builtin.Types[0]->castTo<BuiltinIntegerType>()->getGreatestWidth();
// Compute the destination (for SrcBitWidth < DestBitWidth) and enough info
// to check for overflow.
APInt Result;
bool OverflowError;
Type DstTy;
// Process conversions signed <-> unsigned for same size integers.
if (Builtin.ID == BuiltinValueKind::SUCheckedConversion ||
Builtin.ID == BuiltinValueKind::USCheckedConversion) {
DstTy = SrcTy;
Result = SrcVal;
// Report an error if the sign bit is set.
OverflowError = SrcVal.isNegative();
// Process truncation from unsigned to signed.
} else if (Builtin.ID != BuiltinValueKind::UToSCheckedTrunc) {
assert(Builtin.Types.size() == 2);
DstTy = Builtin.Types[1];
uint32_t DstBitWidth =
DstTy->castTo<BuiltinIntegerType>()->getGreatestWidth();
// Result = trunc_IntFrom_IntTo(Val)
// For signed destination:
// sext_IntFrom(Result) == Val ? Result : overflow_error
// For signed destination:
// zext_IntFrom(Result) == Val ? Result : overflow_error
Result = SrcVal.trunc(DstBitWidth);
// Get the signedness of the destination.
bool Signed = (Builtin.ID == BuiltinValueKind::SToSCheckedTrunc);
APInt Ext = Signed ? Result.sext(SrcBitWidth) : Result.zext(SrcBitWidth);
OverflowError = (SrcVal != Ext);
// Process the rest of truncations.
} else {
assert(Builtin.Types.size() == 2);
DstTy = Builtin.Types[1];
uint32_t DstBitWidth =
Builtin.Types[1]->castTo<BuiltinIntegerType>()->getGreatestWidth();
// Compute the destination (for SrcBitWidth < DestBitWidth):
// Result = trunc_IntTo(Val)
// Trunc = trunc_'IntTo-1bit'(Val)
// zext_IntFrom(Trunc) == Val ? Result : overflow_error
Result = SrcVal.trunc(DstBitWidth);
APInt TruncVal = SrcVal.trunc(DstBitWidth - 1);
OverflowError = (SrcVal != TruncVal.zext(SrcBitWidth));
}
// Check for overflow.
if (OverflowError) {
// If we are not asked to emit overflow diagnostics, just return nullptr on
// overflow.
if (!ResultsInError.hasValue())
return nullptr;
SILLocation Loc = BI->getLoc();
SILModule &M = BI->getModule();
const ApplyExpr *CE = Loc.getAsASTNode<ApplyExpr>();
Type UserSrcTy;
Type UserDstTy;
// Primitive heuristics to get the user-written type.
// Eventually we might be able to use SILLocation (when it contains info
// about inlined call chains).
if (CE) {
if (const TupleType *RTy = CE->getArg()->getType()->getAs<TupleType>()) {
if (RTy->getNumElements() == 1) {
UserSrcTy = RTy->getElementType(0);
UserDstTy = CE->getType();
}
} else {
UserSrcTy = CE->getArg()->getType();
UserDstTy = CE->getType();
}
}
// Assume that we are converting from a literal if the Source size is
// 2048. Is there a better way to identify conversions from literals?
bool Literal = (SrcBitWidth == 2048);
//.........这里部分代码省略.........