本文整理汇总了C++中APInt::countLeadingOnes方法的典型用法代码示例。如果您正苦于以下问题:C++ APInt::countLeadingOnes方法的具体用法?C++ APInt::countLeadingOnes怎么用?C++ APInt::countLeadingOnes使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类APInt
的用法示例。
在下文中一共展示了APInt::countLeadingOnes方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: ComputeMaskedBits
//.........这里部分代码省略.........
// Output known-1 are known to be set if set in either the LHS | RHS.
KnownOne |= KnownOne2;
return;
}
case Instruction::Xor: {
ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD,
Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Output known-0 bits are known if clear or set in both the LHS & RHS.
APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
// Output known-1 are known to be set if set in only one of the LHS, RHS.
KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
KnownZero = KnownZeroOut;
return;
}
case Instruction::Mul: {
APInt Mask2 = APInt::getAllOnesValue(BitWidth);
ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1);
ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// If low bits are zero in either operand, output low known-0 bits.
// Also compute a conserative estimate for high known-0 bits.
// More trickiness is possible, but this is sufficient for the
// interesting case of alignment computation.
KnownOne.clear();
unsigned TrailZ = KnownZero.countTrailingOnes() +
KnownZero2.countTrailingOnes();
unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
KnownZero2.countLeadingOnes(),
BitWidth) - BitWidth;
TrailZ = std::min(TrailZ, BitWidth);
LeadZ = std::min(LeadZ, BitWidth);
KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
APInt::getHighBitsSet(BitWidth, LeadZ);
KnownZero &= Mask;
return;
}
case Instruction::UDiv: {
// For the purposes of computing leading zeros we can conservatively
// treat a udiv as a logical right shift by the power of 2 known to
// be less than the denominator.
APInt AllOnes = APInt::getAllOnesValue(BitWidth);
ComputeMaskedBits(I->getOperand(0),
AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
unsigned LeadZ = KnownZero2.countLeadingOnes();
KnownOne2.clear();
KnownZero2.clear();
ComputeMaskedBits(I->getOperand(1),
AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
if (RHSUnknownLeadingOnes != BitWidth)
LeadZ = std::min(BitWidth,
LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
return;
}
case Instruction::Select:
示例2: determineLiveOperandBits
//.........这里部分代码省略.........
AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
}
break;
case Instruction::LShr:
if (OperandNo == 0)
if (ConstantInt *CI =
dyn_cast<ConstantInt>(UserI->getOperand(1))) {
uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
AB = AOut.shl(ShiftAmt);
// If the shift is exact, then the low bits are not dead
// (they must be zero).
if (cast<LShrOperator>(UserI)->isExact())
AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
}
break;
case Instruction::AShr:
if (OperandNo == 0)
if (ConstantInt *CI =
dyn_cast<ConstantInt>(UserI->getOperand(1))) {
uint64_t ShiftAmt = CI->getLimitedValue(BitWidth-1);
AB = AOut.shl(ShiftAmt);
// Because the high input bit is replicated into the
// high-order bits of the result, if we need any of those
// bits, then we must keep the highest input bit.
if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
.getBoolValue())
AB.setBit(BitWidth-1);
// If the shift is exact, then the low bits are not dead
// (they must be zero).
if (cast<AShrOperator>(UserI)->isExact())
AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
}
break;
case Instruction::And:
AB = AOut;
// For bits that are known zero, the corresponding bits in the
// other operand are dead (unless they're both zero, in which
// case they can't both be dead, so just mark the LHS bits as
// dead).
if (OperandNo == 0) {
ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
AB &= ~KnownZero2;
} else {
if (!isa<Instruction>(UserI->getOperand(0)))
ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
AB &= ~(KnownZero & ~KnownZero2);
}
break;
case Instruction::Or:
AB = AOut;
// For bits that are known one, the corresponding bits in the
// other operand are dead (unless they're both one, in which
// case they can't both be dead, so just mark the LHS bits as
// dead).
if (OperandNo == 0) {
ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
AB &= ~KnownOne2;
} else {
if (!isa<Instruction>(UserI->getOperand(0)))
ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
AB &= ~(KnownOne & ~KnownOne2);
}
break;
case Instruction::Xor:
case Instruction::PHI:
AB = AOut;
break;
case Instruction::Trunc:
AB = AOut.zext(BitWidth);
break;
case Instruction::ZExt:
AB = AOut.trunc(BitWidth);
break;
case Instruction::SExt:
AB = AOut.trunc(BitWidth);
// Because the high input bit is replicated into the
// high-order bits of the result, if we need any of those
// bits, then we must keep the highest input bit.
if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
AOut.getBitWidth() - BitWidth))
.getBoolValue())
AB.setBit(BitWidth-1);
break;
case Instruction::Select:
if (OperandNo != 0)
AB = AOut;
break;
case Instruction::ICmp:
// Count the number of leading zeroes in each operand.
ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
auto NumLeadingZeroes = std::min(KnownZero.countLeadingOnes(),
KnownZero2.countLeadingOnes());
AB = ~APInt::getHighBitsSet(BitWidth, NumLeadingZeroes);
break;
}
}