本文整理匯總了Java中org.apache.commons.math3.util.FastMath.max方法的典型用法代碼示例。如果您正苦於以下問題:Java FastMath.max方法的具體用法?Java FastMath.max怎麽用?Java FastMath.max使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類org.apache.commons.math3.util.FastMath
的用法示例。
在下文中一共展示了FastMath.max方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: converged
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/**
* Check if the optimization algorithm has converged considering the
* last two points.
* This method may be called several times from the same algorithm
* iteration with different points. This can be detected by checking the
* iteration number at each call if needed. Each time this method is
* called, the previous and current point correspond to points with the
* same role at each iteration, so they can be compared. As an example,
* simplex-based algorithms call this method for all points of the simplex,
* not only for the best or worst ones.
*
* @param iteration Index of current iteration
* @param previous Best point in the previous iteration.
* @param current Best point in the current iteration.
* @return {@code true} if the arguments satify the convergence criterion.
*/
@Override
public boolean converged(final int iteration,
final PointVectorValuePair previous,
final PointVectorValuePair current) {
if (maxIterationCount != ITERATION_CHECK_DISABLED && iteration >= maxIterationCount) {
return true;
}
final double[] p = previous.getValueRef();
final double[] c = current.getValueRef();
for (int i = 0; i < p.length; ++i) {
final double pi = p[i];
final double ci = c[i];
final double difference = FastMath.abs(pi - ci);
final double size = FastMath.max(FastMath.abs(pi), FastMath.abs(ci));
if (difference > size * getRelativeThreshold() &&
difference > getAbsoluteThreshold()) {
return false;
}
}
return true;
}
示例2: isNonSingular
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/**
* Checks whether the decomposed matrix is non-singular.
*
* @return true if the decomposed matrix is non-singular.
*/
public boolean isNonSingular() {
double largestEigenvalueNorm = 0.0;
// Looping over all values (in case they are not sorted in decreasing
// order of their norm).
for (int i = 0; i < realEigenvalues.length; ++i) {
largestEigenvalueNorm = FastMath.max(largestEigenvalueNorm, eigenvalueNorm(i));
}
// Corner case: zero matrix, all exactly 0 eigenvalues
if (largestEigenvalueNorm == 0.0) {
return false;
}
for (int i = 0; i < realEigenvalues.length; ++i) {
// Looking for eigenvalues that are 0, where we consider anything much much smaller
// than the largest eigenvalue to be effectively 0.
if (Precision.equals(eigenvalueNorm(i) / largestEigenvalueNorm, 0, EPSILON)) {
return false;
}
}
return true;
}
示例3: isSymmetricInternal
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/**
* Checks whether a matrix is symmetric, within a given relative tolerance.
*
* @param matrix Matrix to check.
* @param relativeTolerance Tolerance of the symmetry check.
* @param raiseException If {@code true}, an exception will be raised if
* the matrix is not symmetric.
* @return {@code true} if {@code matrix} is symmetric.
* @throws NonSquareMatrixException if the matrix is not square.
* @throws NonSymmetricMatrixException if the matrix is not symmetric.
*/
private static boolean isSymmetricInternal(RealMatrix matrix,
double relativeTolerance,
boolean raiseException) {
final int rows = matrix.getRowDimension();
if (rows != matrix.getColumnDimension()) {
if (raiseException) {
throw new NonSquareMatrixException(rows, matrix.getColumnDimension());
} else {
return false;
}
}
for (int i = 0; i < rows; i++) {
for (int j = i + 1; j < rows; j++) {
final double mij = matrix.getEntry(i, j);
final double mji = matrix.getEntry(j, i);
if (FastMath.abs(mij - mji) >
FastMath.max(FastMath.abs(mij), FastMath.abs(mji)) * relativeTolerance) {
if (raiseException) {
throw new NonSymmetricMatrixException(i, j, relativeTolerance);
} else {
return false;
}
}
}
}
return true;
}
示例4: walkInOptimizedOrder
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/** {@inheritDoc} */
@Override
public T walkInOptimizedOrder(final FieldMatrixPreservingVisitor<T> visitor,
final int startRow, final int endRow,
final int startColumn, final int endColumn) {
checkSubMatrixIndex(startRow, endRow, startColumn, endColumn);
visitor.start(rows, columns, startRow, endRow, startColumn, endColumn);
for (int iBlock = startRow / BLOCK_SIZE; iBlock < 1 + endRow / BLOCK_SIZE; ++iBlock) {
final int p0 = iBlock * BLOCK_SIZE;
final int pStart = FastMath.max(startRow, p0);
final int pEnd = FastMath.min((iBlock + 1) * BLOCK_SIZE, 1 + endRow);
for (int jBlock = startColumn / BLOCK_SIZE; jBlock < 1 + endColumn / BLOCK_SIZE; ++jBlock) {
final int jWidth = blockWidth(jBlock);
final int q0 = jBlock * BLOCK_SIZE;
final int qStart = FastMath.max(startColumn, q0);
final int qEnd = FastMath.min((jBlock + 1) * BLOCK_SIZE, 1 + endColumn);
final T[] block = blocks[iBlock * blockColumns + jBlock];
for (int p = pStart; p < pEnd; ++p) {
int k = (p - p0) * jWidth + qStart - q0;
for (int q = qStart; q < qEnd; ++q) {
visitor.visit(p, q, block[k]);
++k;
}
}
}
}
return visitor.end();
}
示例5: TriangularDistribution
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/**
* Creates a triangular distribution.
*
* @param rng Random number generator.
* @param a Lower limit of this distribution (inclusive).
* @param b Upper limit of this distribution (inclusive).
* @param c Mode of this distribution.
* @throws NumberIsTooLargeException if {@code a >= b} or if {@code c > b}.
* @throws NumberIsTooSmallException if {@code c < a}.
* @since 3.1
*/
public TriangularDistribution(RandomGenerator rng,
double a,
double c,
double b)
throws NumberIsTooLargeException, NumberIsTooSmallException {
super(rng);
if (a >= b) {
throw new NumberIsTooLargeException(
LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND,
a, b, false);
}
if (c < a) {
throw new NumberIsTooSmallException(
LocalizedFormats.NUMBER_TOO_SMALL, c, a, true);
}
if (c > b) {
throw new NumberIsTooLargeException(
LocalizedFormats.NUMBER_TOO_LARGE, c, b, true);
}
this.a = a;
this.c = c;
this.b = b;
solverAbsoluteAccuracy = FastMath.max(FastMath.ulp(a), FastMath.ulp(b));
}
示例6: walkInOptimizedOrder
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/** {@inheritDoc} */
@Override
public double walkInOptimizedOrder(final RealMatrixPreservingVisitor visitor,
final int startRow, final int endRow,
final int startColumn, final int endColumn) {
MatrixUtils.checkSubMatrixIndex(this, startRow, endRow, startColumn, endColumn);
visitor.start(rows, columns, startRow, endRow, startColumn, endColumn);
for (int iBlock = startRow / BLOCK_SIZE; iBlock < 1 + endRow / BLOCK_SIZE; ++iBlock) {
final int p0 = iBlock * BLOCK_SIZE;
final int pStart = FastMath.max(startRow, p0);
final int pEnd = FastMath.min((iBlock + 1) * BLOCK_SIZE, 1 + endRow);
for (int jBlock = startColumn / BLOCK_SIZE; jBlock < 1 + endColumn / BLOCK_SIZE; ++jBlock) {
final int jWidth = blockWidth(jBlock);
final int q0 = jBlock * BLOCK_SIZE;
final int qStart = FastMath.max(startColumn, q0);
final int qEnd = FastMath.min((jBlock + 1) * BLOCK_SIZE, 1 + endColumn);
final double[] block = blocks[iBlock * blockColumns + jBlock];
for (int p = pStart; p < pEnd; ++p) {
int k = (p - p0) * jWidth + qStart - q0;
for (int q = qStart; q < qEnd; ++q) {
visitor.visit(p, q, block[k]);
++k;
}
}
}
}
return visitor.end();
}
示例7: calculateMaxMembershipChange
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/**
* Calculate the maximum element-by-element change of the membership matrix
* for the current iteration.
*
* @param matrix the membership matrix of the previous iteration
* @return the maximum membership matrix change
*/
private double calculateMaxMembershipChange(final double[][] matrix) {
double maxMembership = 0.0;
for (int i = 0; i < points.size(); i++) {
for (int j = 0; j < clusters.size(); j++) {
double v = FastMath.abs(membershipMatrix[i][j] - matrix[i][j]);
maxMembership = FastMath.max(v, maxMembership);
}
}
return maxMembership;
}
示例8: walkInRowOrder
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/** {@inheritDoc} */
@Override
public T walkInRowOrder(final FieldMatrixPreservingVisitor<T> visitor,
final int startRow, final int endRow,
final int startColumn, final int endColumn) {
checkSubMatrixIndex(startRow, endRow, startColumn, endColumn);
visitor.start(rows, columns, startRow, endRow, startColumn, endColumn);
for (int iBlock = startRow / BLOCK_SIZE; iBlock < 1 + endRow / BLOCK_SIZE; ++iBlock) {
final int p0 = iBlock * BLOCK_SIZE;
final int pStart = FastMath.max(startRow, p0);
final int pEnd = FastMath.min((iBlock + 1) * BLOCK_SIZE, 1 + endRow);
for (int p = pStart; p < pEnd; ++p) {
for (int jBlock = startColumn / BLOCK_SIZE; jBlock < 1 + endColumn / BLOCK_SIZE; ++jBlock) {
final int jWidth = blockWidth(jBlock);
final int q0 = jBlock * BLOCK_SIZE;
final int qStart = FastMath.max(startColumn, q0);
final int qEnd = FastMath.min((jBlock + 1) * BLOCK_SIZE, 1 + endColumn);
final T[] block = blocks[iBlock * blockColumns + jBlock];
int k = (p - p0) * jWidth + qStart - q0;
for (int q = qStart; q < qEnd; ++q) {
visitor.visit(p, q, block[k]);
++k;
}
}
}
}
return visitor.end();
}
示例9: getLInfNorm
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/** {@inheritDoc} */
@Override
public double getLInfNorm() {
double max = 0;
for (double a : data) {
max = FastMath.max(max, FastMath.abs(a));
}
return max;
}
示例10: walkInRowOrder
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/** {@inheritDoc} */
@Override
public double walkInRowOrder(final RealMatrixPreservingVisitor visitor,
final int startRow, final int endRow,
final int startColumn, final int endColumn) {
MatrixUtils.checkSubMatrixIndex(this, startRow, endRow, startColumn, endColumn);
visitor.start(rows, columns, startRow, endRow, startColumn, endColumn);
for (int iBlock = startRow / BLOCK_SIZE; iBlock < 1 + endRow / BLOCK_SIZE; ++iBlock) {
final int p0 = iBlock * BLOCK_SIZE;
final int pStart = FastMath.max(startRow, p0);
final int pEnd = FastMath.min((iBlock + 1) * BLOCK_SIZE, 1 + endRow);
for (int p = pStart; p < pEnd; ++p) {
for (int jBlock = startColumn / BLOCK_SIZE; jBlock < 1 + endColumn / BLOCK_SIZE; ++jBlock) {
final int jWidth = blockWidth(jBlock);
final int q0 = jBlock * BLOCK_SIZE;
final int qStart = FastMath.max(startColumn, q0);
final int qEnd = FastMath.min((jBlock + 1) * BLOCK_SIZE, 1 + endColumn);
final double[] block = blocks[iBlock * blockColumns + jBlock];
int k = (p - p0) * jWidth + qStart - q0;
for (int q = qStart; q < qEnd; ++q) {
visitor.visit(p, q, block[k]);
++k;
}
}
}
}
return visitor.end();
}
示例11: walkInOptimizedOrder
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/** {@inheritDoc} */
@Override
public T walkInOptimizedOrder(final FieldMatrixPreservingVisitor<T> visitor,
final int startRow, final int endRow,
final int startColumn, final int endColumn)
throws OutOfRangeException, NumberIsTooSmallException {
checkSubMatrixIndex(startRow, endRow, startColumn, endColumn);
visitor.start(rows, columns, startRow, endRow, startColumn, endColumn);
for (int iBlock = startRow / BLOCK_SIZE; iBlock < 1 + endRow / BLOCK_SIZE; ++iBlock) {
final int p0 = iBlock * BLOCK_SIZE;
final int pStart = FastMath.max(startRow, p0);
final int pEnd = FastMath.min((iBlock + 1) * BLOCK_SIZE, 1 + endRow);
for (int jBlock = startColumn / BLOCK_SIZE; jBlock < 1 + endColumn / BLOCK_SIZE; ++jBlock) {
final int jWidth = blockWidth(jBlock);
final int q0 = jBlock * BLOCK_SIZE;
final int qStart = FastMath.max(startColumn, q0);
final int qEnd = FastMath.min((jBlock + 1) * BLOCK_SIZE, 1 + endColumn);
final T[] block = blocks[iBlock * blockColumns + jBlock];
for (int p = pStart; p < pEnd; ++p) {
int k = (p - p0) * jWidth + qStart - q0;
for (int q = qStart; q < qEnd; ++q) {
visitor.visit(p, q, block[k]);
++k;
}
}
}
}
return visitor.end();
}
示例12: walkInOptimizedOrder
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/** {@inheritDoc} */
@Override
public double walkInOptimizedOrder(final RealMatrixChangingVisitor visitor,
final int startRow, final int endRow,
final int startColumn,
final int endColumn)
throws OutOfRangeException, NumberIsTooSmallException {
MatrixUtils.checkSubMatrixIndex(this, startRow, endRow, startColumn, endColumn);
visitor.start(rows, columns, startRow, endRow, startColumn, endColumn);
for (int iBlock = startRow / BLOCK_SIZE; iBlock < 1 + endRow / BLOCK_SIZE; ++iBlock) {
final int p0 = iBlock * BLOCK_SIZE;
final int pStart = FastMath.max(startRow, p0);
final int pEnd = FastMath.min((iBlock + 1) * BLOCK_SIZE, 1 + endRow);
for (int jBlock = startColumn / BLOCK_SIZE; jBlock < 1 + endColumn / BLOCK_SIZE; ++jBlock) {
final int jWidth = blockWidth(jBlock);
final int q0 = jBlock * BLOCK_SIZE;
final int qStart = FastMath.max(startColumn, q0);
final int qEnd = FastMath.min((jBlock + 1) * BLOCK_SIZE, 1 + endColumn);
final double[] block = blocks[iBlock * blockColumns + jBlock];
for (int p = pStart; p < pEnd; ++p) {
int k = (p - p0) * jWidth + qStart - q0;
for (int q = qStart; q < qEnd; ++q) {
block[k] = visitor.visit(p, q, block[k]);
++k;
}
}
}
}
return visitor.end();
}
示例13: Cholesky
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/**
* Calculates the Cholesky decomposition of the given matrix.
* @param matrix the matrix to decompose
* @param relativeSymmetryThreshold threshold above which off-diagonal
* elements are considered too different and matrix not symmetric
* @param absolutePositivityThreshold threshold below which diagonal
* elements are considered null and matrix not positive definite
* @throws NonSquareMatrixException if the matrix is not square.
* @throws NonSymmetricMatrixException if the matrix is not symmetric.
* @throws NonPositiveDefiniteMatrixException if the matrix is not
* strictly positive definite.
* @see #Cholesky(RealMatrix)
* @see #DEFAULT_RELATIVE_SYMMETRY_THRESHOLD
* @see #DEFAULT_ABSOLUTE_POSITIVITY_THRESHOLD
*/
public Cholesky(final RealMatrix matrix,
final double relativeSymmetryThreshold,
final double absolutePositivityThreshold) {
if (!matrix.isSquare()) {
throw new NonSquareMatrixException(matrix.getRowDimension(),
matrix.getColumnDimension());
}
final int order = matrix.getRowDimension();
lTData = matrix.getData();
cachedL = null;
cachedLT = null;
// check the matrix before transformation
for (int i = 0; i < order; ++i) {
final double[] lI = lTData[i];
// check off-diagonal elements (and reset them to 0)
for (int j = i + 1; j < order; ++j) {
final double[] lJ = lTData[j];
final double lIJ = lI[j];
final double lJI = lJ[i];
final double maxDelta =
relativeSymmetryThreshold * FastMath.max(FastMath.abs(lIJ), FastMath.abs(lJI));
if (FastMath.abs(lIJ - lJI) > maxDelta) {
//double mean = .5*(lIJ+lJI);
//lTData[j][i] = lTData[i][j] = mean;
System.out.print("entries: "+lIJ+" "+lJI);
throw new NonSymmetricMatrixException(i, j, relativeSymmetryThreshold);
}
lJ[i] = 0;
}
}
// transform the matrix
for (int i = 0; i < order; ++i) {
final double[] ltI = lTData[i];
// check diagonal element
if (ltI[i] <= absolutePositivityThreshold) {
throw new NonPositiveDefiniteMatrixException(ltI[i], i, absolutePositivityThreshold);
}
ltI[i] = FastMath.sqrt(ltI[i]);
final double inverse = 1.0 / ltI[i];
for (int q = order - 1; q > i; --q) {
ltI[q] *= inverse;
final double[] ltQ = lTData[q];
for (int p = q; p < order; ++p) {
ltQ[p] -= ltI[q] * ltI[p];
}
}
}
}
示例14: run
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
@Override
public void run() {
mixDens[featureIdx] = new BlockRealMatrix(nBetas,nThetas);
for(int j = 0; j < nThetas;j++) {
double theta = thetas.getEntry(j);
RealVector betaDens = new ArrayRealVector(nBetas);
for (int k = 0; k < nBetas; k++) {
double beta = betas.getEntry(k);
double lowerBound = FastMath.max(0, (beta - 1 + theta) / theta);
if (Double.isNaN(lowerBound)) lowerBound = 0;
double upperBound = FastMath.min(1,beta/theta);
if (Double.isNaN(upperBound)) upperBound = 1;
double step = (upperBound-lowerBound)/(nPoints-1);
RealVector dens = new ArrayRealVector(nPoints);
RealVector points = new ArrayRealVector(nPoints);
RealVector allTumorDens = new ArrayRealVector(nPoints);
RealVector allNormalDens = new ArrayRealVector(nPoints);
RealVector allNormalDensRev = new ArrayRealVector(nPoints);
// tumor
for (int l = 0; l < nPoints; l++) {
double tumorValue = lowerBound + l * step;
points.setEntry(l, tumorValue);
if (tumorValue == 0) tumorValue = 0.0001;
if (tumorValue == 1) tumorValue = 0.9999;
allTumorDens.setEntry(l,tumorDist.density(tumorValue));
}
// adjust the densities
double calProb = tumorDist.probability(lowerBound,upperBound);
double estProb = CancerLocator.integSimpson(points,allTumorDens);
if (estProb!=0) {
allTumorDens.mapMultiplyToSelf(calProb/estProb);
}
else {
allTumorDens.mapAddToSelf(1.0/allTumorDens.getDimension());
}
// normal
RealVector normalPoints = new ArrayRealVector(nPoints);
for (int l = 0; l < nPoints; l++) {
double normalValue = (beta-theta*points.getEntry(l))/(1-theta);
normalPoints.setEntry(nPoints-l-1,normalValue);
if (normalValue == 0) normalValue = 0.0001;
if (normalValue == 1) normalValue = 0.9999;
double normalDens = normalDist.density(normalValue);
allNormalDens.setEntry(l,normalDens);
allNormalDensRev.setEntry(nPoints-l-1,normalDens);
}
calProb = normalDist.probability((beta-theta*upperBound)/(1-theta),(beta-theta*lowerBound)/(1-theta));
estProb = CancerLocator.integSimpson(normalPoints, allNormalDensRev);
if (estProb!=0) {
allNormalDens.mapMultiplyToSelf(calProb/estProb);
}
else {
allNormalDens.mapAddToSelf(1.0/allNormalDens.getDimension());
}
//mixture
for (int l = 0; l < nPoints; l++) {
dens.setEntry(l,allTumorDens.getEntry(l)*allNormalDens.getEntry(l));
}
betaDens.setEntry(k,CancerLocator.integSimpson(points,dens));
}
double normTerm = CancerLocator.integSimpson(betas,betaDens); //normalization term
if (normTerm!=0) {
betaDens.mapDivideToSelf(normTerm);
}
else {
betaDens.mapAddToSelf(1.0/betaDens.getDimension());
}
mixDens[featureIdx].setColumnVector(j, betaDens);
}
}
示例15: riddersDerivative
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/**
* Returns the derivative of a function func at a point x by Ridders’ method of polynomial extrapolation. The
* value h is input as an estimated initial stepsize; it need not be small, but rather should be an increment in
* x over which func changes substantially. An estimate of the error in the derivative is returned as err.
*/
IntermediateValue riddersDerivative(CalculatedValue.PartType partType, Complex z, double h)
throws CancelException
{
final int NTAB = RIDDER_MAX_ITERATIONS_COUNT;
final double CON = 1.4;
final double CON2 = (CON * CON);
double err = 1.0e30;
double hh = h;
double[][] a = new double[NTAB + 1][NTAB + 1];
final IntermediateValue ans = new IntermediateValue();
final CalculatedValue leftVal = new CalculatedValue();
final CalculatedValue rightVal = new CalculatedValue();
argValue.setComplexValue(z.getReal() + hh, z.getImaginary());
argTerm.getValue(calculaterTask, leftVal);
argValue.setComplexValue(z.getReal() - hh, z.getImaginary());
argTerm.getValue(calculaterTask, rightVal);
a[1][1] = (leftVal.getPart(partType) - rightVal.getPart(partType)) / (2.0 * hh);
if (leftVal.isComplex() || rightVal.isComplex())
{
ans.complexDetected = true;
}
for (int i = 2; i <= NTAB; i++)
{
hh /= CON;
argValue.setComplexValue(z.getReal() + hh, z.getImaginary());
argTerm.getValue(calculaterTask, leftVal);
argValue.setComplexValue(z.getReal() - hh, z.getImaginary());
argTerm.getValue(calculaterTask, rightVal);
a[1][i] = (leftVal.getPart(partType) - rightVal.getPart(partType)) / (2.0 * hh);
if (leftVal.isComplex() || rightVal.isComplex())
{
ans.complexDetected = true;
}
double fac = CON2;
for (int j = 2; j <= i; j++)
{
a[j][i] = (a[j - 1][i] * fac - a[j - 1][i - 1]) / (fac - 1.0);
fac = CON2 * fac;
final double errt = FastMath.max(FastMath.abs(a[j][i] - a[j - 1][i]),
FastMath.abs(a[j][i] - a[j - 1][i - 1]));
if (errt <= err)
{
err = errt;
ans.value = a[j][i];
}
}
if (FastMath.abs(a[i][i] - a[i - 1][i - 1]) >= 2.0 * (err))
{
break;
}
}
return ans;
}