本文整理匯總了Java中org.apache.commons.math3.util.FastMath.log方法的典型用法代碼示例。如果您正苦於以下問題:Java FastMath.log方法的具體用法?Java FastMath.log怎麽用?Java FastMath.log使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類org.apache.commons.math3.util.FastMath
的用法示例。
在下文中一共展示了FastMath.log方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: calculateShape
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
public static double calculateShape(double percentile, List<Double> scores) {
int pos = (int)(scores.size() * percentile);
double loc = scores.get(pos);
// calculate Pareto shape
double shape = 0;
for (int i = pos; i < scores.size() ; i++) {
double d = scores.get(i) - loc + 1;
shape += FastMath.log(d);
}
shape /= (scores.size() - pos);
shape = 1/shape;
return shape;
}
示例2: PascalDistribution
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/**
* Create a Pascal distribution with the given number of successes and
* probability of success.
*
* @param rng Random number generator.
* @param r Number of successes.
* @param p Probability of success.
* @throws NotStrictlyPositiveException if the number of successes is not positive
* @throws OutOfRangeException if the probability of success is not in the
* range {@code [0, 1]}.
* @since 3.1
*/
public PascalDistribution(RandomGenerator rng,
int r,
double p)
throws NotStrictlyPositiveException, OutOfRangeException {
super(rng);
if (r <= 0) {
throw new NotStrictlyPositiveException(LocalizedFormats.NUMBER_OF_SUCCESSES,
r);
}
if (p < 0 || p > 1) {
throw new OutOfRangeException(p, 0, 1);
}
numberOfSuccesses = r;
probabilityOfSuccess = p;
logProbabilityOfSuccess = FastMath.log(p);
log1mProbabilityOfSuccess = FastMath.log1p(-p);
}
示例3: log
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/** Compute natural logarithm of a derivative structure.
* @param operand array holding the operand
* @param operandOffset offset of the operand in its array
* @param result array where result must be stored (for
* logarithm the result array <em>cannot</em> be the input
* array)
* @param resultOffset offset of the result in its array
*/
public void log(final double[] operand, final int operandOffset,
final double[] result, final int resultOffset) {
// create the function value and derivatives
double[] function = new double[1 + order];
function[0] = FastMath.log(operand[operandOffset]);
if (order > 0) {
double inv = 1.0 / operand[operandOffset];
double xk = inv;
for (int i = 1; i <= order; ++i) {
function[i] = xk;
xk *= -i * inv;
}
}
// apply function composition
compose(operand, operandOffset, function, result, resultOffset);
}
示例4: digamma
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/**
* <p>Computes the digamma function of x.</p>
*
* <p>This is an independently written implementation of the algorithm described in
* Jose Bernardo, Algorithm AS 103: Psi (Digamma) Function, Applied Statistics, 1976.</p>
*
* <p>Some of the constants have been changed to increase accuracy at the moderate expense
* of run-time. The result should be accurate to within 10^-8 absolute tolerance for
* x >= 10^-5 and within 10^-8 relative tolerance for x > 0.</p>
*
* <p>Performance for large negative values of x will be quite expensive (proportional to
* |x|). Accuracy for negative values of x should be about 10^-8 absolute for results
* less than 10^5 and 10^-8 relative for results larger than that.</p>
*
* @param x Argument.
* @return digamma(x) to within 10-8 relative or absolute error whichever is smaller.
* @see <a href="http://en.wikipedia.org/wiki/Digamma_function">Digamma</a>
* @see <a href="http://www.uv.es/~bernardo/1976AppStatist.pdf">Bernardo's original article </a>
* @since 2.0
*/
public static double digamma(double x) {
if (Double.isNaN(x) || Double.isInfinite(x)) {
return x;
}
if (x > 0 && x <= S_LIMIT) {
// use method 5 from Bernardo AS103
// accurate to O(x)
return -GAMMA - 1 / x;
}
if (x >= C_LIMIT) {
// use method 4 (accurate to O(1/x^8)
double inv = 1 / (x * x);
// 1 1 1 1
// log(x) - --- - ------ + ------- - -------
// 2 x 12 x^2 120 x^4 252 x^6
return FastMath.log(x) - 0.5 / x - inv * ((1.0 / 12) + inv * (1.0 / 120 - inv / 252));
}
return digamma(x + 1) - 1 / x;
}
示例5: log2
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/**
* Computes the binary logarithm. (logarithm base 2)
*
* @param x
* the input
* @return the log to the base 2 of x
*/
public static final double log2(final double x) {
if (x == 0) {
return 0;
} else {
return FastMath.log(x) / LOG2;
}
}
示例6: calLogCompoundDens
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
private static double calLogCompoundDens(RealVector betas, RealVector betaDens, int n, int k) {
double logComb = CombinatoricsUtils.binomialCoefficientLog(n,k);
int nBetas = betas.getDimension();
RealVector dens = new ArrayRealVector(nBetas);
for (int i = 0; i < nBetas; i++) {
dens.setEntry(i, betaDens.getEntry(i) * FastMath.pow(betas.getEntry(i), k)
* FastMath.pow(1 - betas.getEntry(i), n - k));
}
double prob = integSimpson(betas,dens);
double logProb=(prob==0)?-1000:FastMath.log(prob); // avoid -Inf
return logComb+logProb;
}
示例7: inverseCumulativeProbability
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/**
* {@inheritDoc}
*
* Returns {@code 0} when {@code p= = 0} and
* {@code Double.POSITIVE_INFINITY} when {@code p == 1}.
*/
@Override
public double inverseCumulativeProbability(double p) throws OutOfRangeException {
double ret;
if (p < 0.0 || p > 1.0) {
throw new OutOfRangeException(p, 0.0, 1.0);
} else if (p == 1.0) {
ret = Double.POSITIVE_INFINITY;
} else {
ret = -mean * FastMath.log(1.0 - p);
}
return ret;
}
示例8: entropy
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/**
* Calculates the <a href="http://en.wikipedia.org/wiki/Entropy_%28information_theory%29">
* Shannon entropy</a> for a vector. The values of {@code k} are taken to be
* incidence counts of the values of a random variable. What is returned is <br/>
* ∑p<sub>i</sub>log(p<sub>i</sub><br/>
* where p<sub>i</sub> = k[i] / (sum of elements in k)
*
* @param k Vector (for ex. Row Sums of a trials)
* @return Shannon Entropy of the given Vector
*
*/
private double entropy(final long[] k) {
double h = 0d;
double sum_k = 0d;
for (int i = 0; i < k.length; i++) {
sum_k += (double) k[i];
}
for (int i = 0; i < k.length; i++) {
if (k[i] != 0) {
final double p_i = (double) k[i] / sum_k;
h += p_i * FastMath.log(p_i);
}
}
return -h;
}
示例9: log
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/**
* @param m Input matrix
* @return Matrix representing the element-wise logarithm of m.
*/
private static RealMatrix log(final RealMatrix m) {
final double[][] d = new double[m.getRowDimension()][m.getColumnDimension()];
for (int r = 0; r < m.getRowDimension(); r++) {
for (int c = 0; c < m.getColumnDimension(); c++) {
d[r][c] = FastMath.log(m.getEntry(r, c));
}
}
return new Array2DRowRealMatrix(d, false);
}
示例10: logProbability
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/** {@inheritDoc} */
@Override
public double logProbability(int x) {
double ret;
if (x < 0 || x == Integer.MAX_VALUE) {
ret = Double.NEGATIVE_INFINITY;
} else if (x == 0) {
ret = -mean;
} else {
ret = -SaddlePointExpansion.getStirlingError(x) -
SaddlePointExpansion.getDeviancePart(x, mean) -
0.5 * FastMath.log(MathUtils.TWO_PI) - 0.5 * FastMath.log(x);
}
return ret;
}
示例11: value
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/**
* @param x Value at which to compute the logit.
* @param lo Lower bound.
* @param hi Higher bound.
* @return the value of the logit function at {@code x}.
*/
private static double value(double x,
double lo,
double hi) {
if (x < lo || x > hi) {
throw new OutOfRangeException(x, lo, hi);
}
return FastMath.log((x - lo) / (hi - x));
}
示例12: GeometricDistribution
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/**
* Creates a geometric distribution.
*
* @param rng Random number generator.
* @param p Probability of success.
* @throws OutOfRangeException if {@code p <= 0} or {@code p > 1}.
*/
public GeometricDistribution(RandomGenerator rng, double p) {
super(rng);
if (p <= 0 || p > 1) {
throw new OutOfRangeException(LocalizedFormats.OUT_OF_RANGE_LEFT, p, 0, 1);
}
probabilityOfSuccess = p;
logProbabilityOfSuccess = FastMath.log(p);
log1mProbabilityOfSuccess = FastMath.log1p(-p);
}
示例13: GammaDistribution
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/**
* Creates a Gamma distribution.
*
* @param rng Random number generator.
* @param shape the shape parameter
* @param scale the scale parameter
* @param inverseCumAccuracy the maximum absolute error in inverse
* cumulative probability estimates (defaults to
* {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
* @throws NotStrictlyPositiveException if {@code shape <= 0} or
* {@code scale <= 0}.
* @since 3.1
*/
public GammaDistribution(RandomGenerator rng,
double shape,
double scale,
double inverseCumAccuracy)
throws NotStrictlyPositiveException {
super(rng);
if (shape <= 0) {
throw new NotStrictlyPositiveException(LocalizedFormats.SHAPE, shape);
}
if (scale <= 0) {
throw new NotStrictlyPositiveException(LocalizedFormats.SCALE, scale);
}
this.shape = shape;
this.scale = scale;
this.solverAbsoluteAccuracy = inverseCumAccuracy;
this.shiftedShape = shape + Gamma.LANCZOS_G + 0.5;
final double aux = FastMath.E / (2.0 * FastMath.PI * shiftedShape);
this.densityPrefactor2 = shape * FastMath.sqrt(aux) / Gamma.lanczos(shape);
this.logDensityPrefactor2 = FastMath.log(shape) + 0.5 * FastMath.log(aux) -
FastMath.log(Gamma.lanczos(shape));
this.densityPrefactor1 = this.densityPrefactor2 / scale *
FastMath.pow(shiftedShape, -shape) *
FastMath.exp(shape + Gamma.LANCZOS_G);
this.logDensityPrefactor1 = this.logDensityPrefactor2 - FastMath.log(scale) -
FastMath.log(shiftedShape) * shape +
shape + Gamma.LANCZOS_G;
this.minY = shape + Gamma.LANCZOS_G - FastMath.log(Double.MAX_VALUE);
this.maxLogY = FastMath.log(Double.MAX_VALUE) / (shape - 1.0);
}
示例14: logGammaMinusLogGammaSum
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/**
* Returns the value of log[Γ(b) / Γ(a + b)] for a ≥ 0 and b ≥ 10. Based on
* the <em>NSWC Library of Mathematics Subroutines</em> double precision
* implementation, {@code DLGDIV}. In
* {@code BetaTest.testLogGammaMinusLogGammaSum()}, this private method is
* accessed through reflection.
*
* @param a First argument.
* @param b Second argument.
* @return the value of {@code log(Gamma(b) / Gamma(a + b))}.
* @throws NumberIsTooSmallException if {@code a < 0.0} or {@code b < 10.0}.
*/
private static double logGammaMinusLogGammaSum(final double a,
final double b)
throws NumberIsTooSmallException {
if (a < 0.0) {
throw new NumberIsTooSmallException(a, 0.0, true);
}
if (b < 10.0) {
throw new NumberIsTooSmallException(b, 10.0, true);
}
/*
* d = a + b - 0.5
*/
final double d;
final double w;
if (a <= b) {
d = b + (a - 0.5);
w = deltaMinusDeltaSum(a, b);
} else {
d = a + (b - 0.5);
w = deltaMinusDeltaSum(b, a);
}
final double u = d * FastMath.log1p(a / b);
final double v = a * (FastMath.log(b) - 1.0);
return u <= v ? (w - u) - v : (w - v) - u;
}
示例15: addValue
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
private void addValue(double val) {
this.value += FastMath.log(val);
n++;
}