本文整理匯總了Java中org.apache.commons.math3.util.FastMath.PI屬性的典型用法代碼示例。如果您正苦於以下問題:Java FastMath.PI屬性的具體用法?Java FastMath.PI怎麽用?Java FastMath.PI使用的例子?那麽, 這裏精選的屬性代碼示例或許可以為您提供幫助。您也可以進一步了解該屬性所在類org.apache.commons.math3.util.FastMath
的用法示例。
在下文中一共展示了FastMath.PI屬性的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: setPreferredVelocities
private void setPreferredVelocities() {
// Set the preferred velocity to be a vector of unit magnitude (speed)
// in the direction of the goal.
for (int agentNo = 0; agentNo < Simulator.instance.getNumAgents(); agentNo++) {
Vector2D goalVector = goals.get(agentNo).subtract(Simulator.instance.getAgentPosition(agentNo));
final double lengthSq = goalVector.getNormSq();
if (lengthSq > 1.0) {
goalVector = goalVector.scalarMultiply(1.0 / FastMath.sqrt(lengthSq));
}
Simulator.instance.setAgentPreferredVelocity(agentNo, goalVector);
// Perturb a little to avoid deadlocks due to perfect symmetry.
final double angle = random.nextDouble() * 2.0 * FastMath.PI;
final double distance = random.nextDouble() * 0.0001;
Simulator.instance.setAgentPreferredVelocity(agentNo, Simulator.instance.getAgentPreferredVelocity(agentNo).add(new Vector2D(FastMath.cos(angle), FastMath.sin(angle)).scalarMultiply(distance)));
}
}
示例2: setupScenario
private void setupScenario() {
// Specify the global time step of the simulation.
Simulator.instance.setTimeStep(0.25);
// Specify the default parameters for agents that are subsequently
// added.
Simulator.instance.setAgentDefaults(15.0, 10, 10.0, 10.0, 1.5, 2.0, Vector2D.ZERO);
// Add agents, specifying their start position, and store their goals on
// the opposite side of the environment.
final double angle = 0.008 * FastMath.PI;
for (int i = 0; i < 250; i++) {
Simulator.instance.addAgent(new Vector2D(FastMath.cos(i * angle), FastMath.sin(i * angle)).scalarMultiply(200.0));
goals.add(Simulator.instance.getAgentPosition(i).negate());
}
}
示例3: Arc
/** Simple constructor.
* <p>
* If either {@code lower} is equals to {@code upper} or
* the interval exceeds \( 2 \pi \), the arc is considered
* to be the full circle and its initial defining boundaries
* will be forgotten. {@code lower} is not allowed to be
* greater than {@code upper} (an exception is thrown in this case).
* {@code lower} will be canonicalized between 0 and \( 2 \pi \), and
* upper shifted accordingly, so the {@link #getInf()} and {@link #getSup()}
* may not return the value used at instance construction.
* </p>
* @param lower lower angular bound of the arc
* @param upper upper angular bound of the arc
* @param tolerance tolerance below which angles are considered identical
* @exception NumberIsTooLargeException if lower is greater than upper
*/
public Arc(final double lower, final double upper, final double tolerance)
throws NumberIsTooLargeException {
this.tolerance = tolerance;
if (Precision.equals(lower, upper, 0) || (upper - lower) >= MathUtils.TWO_PI) {
// the arc must cover the whole circle
this.lower = 0;
this.upper = MathUtils.TWO_PI;
this.middle = FastMath.PI;
} else if (lower <= upper) {
this.lower = MathUtils.normalizeAngle(lower, FastMath.PI);
this.upper = this.lower + (upper - lower);
this.middle = 0.5 * (this.lower + this.upper);
} else {
throw new NumberIsTooLargeException(LocalizedFormats.ENDPOINTS_NOT_AN_INTERVAL,
lower, upper, true);
}
}
示例4: angle
/** Compute the angular separation between two vectors.
* <p>This method computes the angular separation between two
* vectors using the dot product for well separated vectors and the
* cross product for almost aligned vectors. This allows to have a
* good accuracy in all cases, even for vectors very close to each
* other.</p>
* @param v1 first vector
* @param v2 second vector
* @return angular separation between v1 and v2
* @exception MathArithmeticException if either vector has a null norm
*/
public static double angle(Vector2D v1, Vector2D v2) throws MathArithmeticException {
double normProduct = v1.getNorm() * v2.getNorm();
if (normProduct == 0) {
throw new MathArithmeticException(LocalizedFormats.ZERO_NORM);
}
double dot = v1.dotProduct(v2);
double threshold = normProduct * 0.9999;
if ((dot < -threshold) || (dot > threshold)) {
// the vectors are almost aligned, compute using the sine
final double n = FastMath.abs(MathArrays.linearCombination(v1.x, v2.y, -v1.y, v2.x));
if (dot >= 0) {
return FastMath.asin(n / normProduct);
}
return FastMath.PI - FastMath.asin(n / normProduct);
}
// the vectors are sufficiently separated to use the cosine
return FastMath.acos(dot / normProduct);
}
示例5: vector
/** Build the normalized vector corresponding to spherical coordinates.
* @param theta azimuthal angle \( \theta \) in the x-y plane
* @param phi polar angle \( \varphi \)
* @return normalized vector
* @exception OutOfRangeException if \( \varphi \) is not in the [\( 0; \pi \)] range
*/
private static Vector3D vector(final double theta, final double phi)
throws OutOfRangeException {
if (phi < 0 || phi > FastMath.PI) {
throw new OutOfRangeException(phi, 0, FastMath.PI);
}
final double cosTheta = FastMath.cos(theta);
final double sinTheta = FastMath.sin(theta);
final double cosPhi = FastMath.cos(phi);
final double sinPhi = FastMath.sin(phi);
return new Vector3D(cosTheta * sinPhi, sinTheta * sinPhi, cosPhi);
}
示例6: angle
/** Compute the angular separation between two vectors.
* <p>This method computes the angular separation between two
* vectors using the dot product for well separated vectors and the
* cross product for almost aligned vectors. This allows to have a
* good accuracy in all cases, even for vectors very close to each
* other.</p>
* @param v1 first vector
* @param v2 second vector
* @return angular separation between v1 and v2
* @exception MathArithmeticException if either vector has a null norm
*/
public static double angle(Vector3D v1, Vector3D v2) throws MathArithmeticException {
double normProduct = v1.getNorm() * v2.getNorm();
if (normProduct == 0) {
throw new MathArithmeticException(LocalizedFormats.ZERO_NORM);
}
double dot = v1.dotProduct(v2);
double threshold = normProduct * 0.9999;
if ((dot < -threshold) || (dot > threshold)) {
// the vectors are almost aligned, compute using the sine
Vector3D v3 = crossProduct(v1, v2);
if (dot >= 0) {
return FastMath.asin(v3.getNorm() / normProduct);
}
return FastMath.PI - FastMath.asin(v3.getNorm() / normProduct);
}
// the vectors are sufficiently separated to use the cosine
return FastMath.acos(dot / normProduct);
}
示例7: reset
/** Reset the instance as if built from two points.
* <p>The line is oriented from p1 to p2</p>
* @param p1 first point
* @param p2 second point
*/
public void reset(final Vector2D p1, final Vector2D p2) {
unlinkReverse();
final double dx = p2.getX() - p1.getX();
final double dy = p2.getY() - p1.getY();
final double d = FastMath.hypot(dx, dy);
if (d == 0.0) {
angle = 0.0;
cos = 1.0;
sin = 0.0;
originOffset = p1.getY();
} else {
angle = FastMath.PI + FastMath.atan2(-dy, -dx);
cos = dx / d;
sin = dy / d;
originOffset = MathArrays.linearCombination(p2.getX(), p1.getY(), -p1.getX(), p2.getY()) / d;
}
}
示例8: Geoid
public Geoid(double lat,double lon,double h){
this.lat=lat;
this.lon=lon;
this.latRad=lat*FastMath.PI/180;
this.lonRad=lon*FastMath.PI/180;
this.h=h;
}
示例9: distance
/**
*
* @param lon1
* @param lat1
* @param lon2
* @param lat2
* @return calculate the distance between 2 points
*/
public static double distance(double lon1, double lat1, double lon2, double lat2){
lon1=(lon1*FastMath.PI)/180;
lat1=(lat1*FastMath.PI)/180;
lon2=(lon2*FastMath.PI)/180;
lat2=(lat2*FastMath.PI)/180;
return distanceRad(lon1,lat1,lon2,lat2);
}
示例10: GammaDistribution
/**
* Creates a Gamma distribution.
*
* @param rng Random number generator.
* @param shape the shape parameter
* @param scale the scale parameter
* @param inverseCumAccuracy the maximum absolute error in inverse
* cumulative probability estimates (defaults to
* {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
* @throws NotStrictlyPositiveException if {@code shape <= 0} or
* {@code scale <= 0}.
* @since 3.1
*/
public GammaDistribution(RandomGenerator rng,
double shape,
double scale,
double inverseCumAccuracy)
throws NotStrictlyPositiveException {
super(rng);
if (shape <= 0) {
throw new NotStrictlyPositiveException(LocalizedFormats.SHAPE, shape);
}
if (scale <= 0) {
throw new NotStrictlyPositiveException(LocalizedFormats.SCALE, scale);
}
this.shape = shape;
this.scale = scale;
this.solverAbsoluteAccuracy = inverseCumAccuracy;
this.shiftedShape = shape + Gamma.LANCZOS_G + 0.5;
final double aux = FastMath.E / (2.0 * FastMath.PI * shiftedShape);
this.densityPrefactor2 = shape * FastMath.sqrt(aux) / Gamma.lanczos(shape);
this.logDensityPrefactor2 = FastMath.log(shape) + 0.5 * FastMath.log(aux) -
FastMath.log(Gamma.lanczos(shape));
this.densityPrefactor1 = this.densityPrefactor2 / scale *
FastMath.pow(shiftedShape, -shape) *
FastMath.exp(shape + Gamma.LANCZOS_G);
this.logDensityPrefactor1 = this.logDensityPrefactor2 - FastMath.log(scale) -
FastMath.log(shiftedShape) * shape +
shape + Gamma.LANCZOS_G;
this.minY = shape + Gamma.LANCZOS_G - FastMath.log(Double.MAX_VALUE);
this.maxLogY = FastMath.log(Double.MAX_VALUE) / (shape - 1.0);
}
示例11: value
/** {@inheritDoc} */
public double value(final double x) {
final double scaledX = normalized ? FastMath.PI * x : x;
if (FastMath.abs(scaledX) <= SHORTCUT) {
// use Taylor series
final double scaledX2 = scaledX * scaledX;
return ((scaledX2 - 20) * scaledX2 + 120) / 120;
} else {
// use definition expression
return FastMath.sin(scaledX) / scaledX;
}
}
示例12: convexCellArea
/** Compute convex cell area.
* @param start start vertex of the convex cell boundary
* @return area
*/
private double convexCellArea(final Vertex start) {
int n = 0;
double sum = 0;
// loop around the cell
for (Edge e = start.getOutgoing(); n == 0 || e.getStart() != start; e = e.getEnd().getOutgoing()) {
// find path interior angle at vertex
final Vector3D previousPole = e.getCircle().getPole();
final Vector3D nextPole = e.getEnd().getOutgoing().getCircle().getPole();
final Vector3D point = e.getEnd().getLocation().getVector();
double alpha = FastMath.atan2(Vector3D.dotProduct(nextPole, Vector3D.crossProduct(point, previousPole)),
-Vector3D.dotProduct(nextPole, previousPole));
if (alpha < 0) {
alpha += MathUtils.TWO_PI;
}
sum += alpha;
n++;
}
// compute area using extended Girard theorem
// see Spherical Trigonometry: For the Use of Colleges and Schools by I. Todhunter
// article 99 in chapter VIII Area Of a Spherical Triangle. Spherical Excess.
// book available from project Gutenberg at http://www.gutenberg.org/ebooks/19770
return sum - (n - 2) * FastMath.PI;
}
示例13: nthRoot
/**
* Computes the n-th roots of this complex number.
* The nth roots are defined by the formula:
* <pre>
* <code>
* z<sub>k</sub> = abs<sup>1/n</sup> (cos(phi + 2πk/n) + i (sin(phi + 2πk/n))
* </code>
* </pre>
* for <i>{@code k=0, 1, ..., n-1}</i>, where {@code abs} and {@code phi}
* are respectively the {@link #abs() modulus} and
* {@link #getArgument() argument} of this complex number.
* <p>
* If one or both parts of this complex number is NaN, a list with just
* one element, {@link #NaN} is returned.
* if neither part is NaN, but at least one part is infinite, the result
* is a one-element list containing {@link #INF}.
*
* @param n Degree of root.
* @return a List of all {@code n}-th roots of {@code this}.
* @throws NotPositiveException if {@code n <= 0}.
* @since 2.0
*/
public List<Complex> nthRoot(int n) throws NotPositiveException {
if (n <= 0) {
throw new NotPositiveException(LocalizedFormats.CANNOT_COMPUTE_NTH_ROOT_FOR_NEGATIVE_N,
n);
}
final List<Complex> result = new ArrayList<Complex>();
if (isNaN) {
result.add(NaN);
return result;
}
if (isInfinite()) {
result.add(INF);
return result;
}
// nth root of abs -- faster / more accurate to use a solver here?
final double nthRootOfAbs = FastMath.pow(abs(), 1.0 / n);
// Compute nth roots of complex number with k = 0, 1, ... n-1
final double nthPhi = getArgument() / n;
final double slice = 2 * FastMath.PI / n;
double innerPart = nthPhi;
for (int k = 0; k < n ; k++) {
// inner part
final double realPart = nthRootOfAbs * FastMath.cos(innerPart);
final double imaginaryPart = nthRootOfAbs * FastMath.sin(innerPart);
result.add(createComplex(realPart, imaginaryPart));
innerPart += slice;
}
return result;
}
示例14: revertSelf
/** Revert the instance.
*/
public void revertSelf() {
unlinkReverse();
if (angle < FastMath.PI) {
angle += FastMath.PI;
} else {
angle -= FastMath.PI;
}
cos = -cos;
sin = -sin;
originOffset = -originOffset;
}
示例15: getGeoidHOptimized
/**
* search a point with distance<50 from the (lon,lat) parameter and return the geoid height
*
* @param lon
* @param lat
* @return the geoid Height for a point (lon,lat)
*/
public static double getGeoidHOptimized(Geoid[][] gpoints,final double lon,final double lat){
double h=0;
double lonRad=lon*FastMath.PI/180;
double latRad=lat*FastMath.PI/180;
boolean finded=false;
for(int row=0;row<geoidPoints.length&&!finded;row++){
int middle=geoidPoints[0].length/2;
Geoid geoRow[]=geoidPoints[row];
//first value
Geoid g=geoRow[middle];
double middleDist = distanceRad(lonRad,latRad,g.lonRad,g.latRad);
double oldDist =middleDist;
if(middleDist<75){
h= g.h;
}else{
int left=0;
int right=geoidPoints[0].length;
for(;right-left>1;){
int middleLeft=(left+middle)/2;
int middleRight=middle+(right-middle)/2;
double middleDistL = distanceRad(lonRad,latRad,geoRow[middleLeft].lonRad,geoRow[middleLeft].latRad);
double middleDistR = distanceRad(lonRad,latRad,geoRow[middleRight].lonRad,geoRow[middleRight].latRad);
if(middleDistL<middleDistR){
right=middle;
middle=left+(right-left)/2;
middleDist=middleDistL;
}else{
left=middle;
middle=left+(right-left)/2;
middleDist=middleDistR;
}
if(middleDist<75&&oldDist>middleDist){
//if(oldDist>middleDist){
//finded=true;
oldDist=middleDist;
h=geoRow[middle].h;
//System.out.println("D:"+middleDist+" - H:"+h+" - lon,lat:"+geoRow[middle].lonRad+","+geoRow[middle].lonRad);
break;
}
}
}
}
// System.out.println("H:"+h);
return h;
}