本文整理匯總了Java中org.apache.commons.math3.util.FastMath.rint方法的典型用法代碼示例。如果您正苦於以下問題:Java FastMath.rint方法的具體用法?Java FastMath.rint怎麽用?Java FastMath.rint使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類org.apache.commons.math3.util.FastMath
的用法示例。
在下文中一共展示了FastMath.rint方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: remainder
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/** Perform remainder of two derivative structures.
* @param lhs array holding left hand side of remainder
* @param lhsOffset offset of the left hand side in its array
* @param rhs array right hand side of remainder
* @param rhsOffset offset of the right hand side in its array
* @param result array where result must be stored (it may be
* one of the input arrays)
* @param resultOffset offset of the result in its array
*/
public void remainder(final double[] lhs, final int lhsOffset,
final double[] rhs, final int rhsOffset,
final double[] result, final int resultOffset) {
// compute k such that lhs % rhs = lhs - k rhs
final double rem = FastMath.IEEEremainder(lhs[lhsOffset], rhs[rhsOffset]);
final double k = FastMath.rint((lhs[lhsOffset] - rem) / rhs[rhsOffset]);
// set up value
result[resultOffset] = rem;
// set up partial derivatives
for (int i = 1; i < getSize(); ++i) {
result[resultOffset + i] = lhs[lhsOffset + i] - k * rhs[rhsOffset + i];
}
}
示例2: index
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
@Override
protected double index(final double p, final int length) {
final double minLimit = 1d/2 / length;
return Double.compare(p, minLimit) <= 0 ?
0 : FastMath.rint(length * p);
}
示例3: value
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/** {@inheritDoc} */
public double value(double x) {
return FastMath.rint(x);
}
示例4: rint
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/** {@inheritDoc}
* @since 3.2
*/
public DerivativeStructure rint() {
return new DerivativeStructure(compiler.getFreeParameters(),
compiler.getOrder(),
FastMath.rint(data[0]));
}
示例5: exponentialDecay
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/**
* Creates an exponential decay {@link NeighbourhoodSizeFunction function}.
* It will compute <code>a e<sup>-x / b</sup></code>,
* where {@code x} is the (integer) independent variable and
* <ul>
* <li><code>a = initValue</code>
* <li><code>b = -numCall / ln(valueAtNumCall / initValue)</code>
* </ul>
*
* @param initValue Initial value, i.e.
* {@link NeighbourhoodSizeFunction#value(long) value(0)}.
* @param valueAtNumCall Value of the function at {@code numCall}.
* @param numCall Argument for which the function returns
* {@code valueAtNumCall}.
* @return the neighbourhood size function.
* @throws org.apache.commons.math3.exception.NotStrictlyPositiveException
* if {@code initValue <= 0}.
* @throws org.apache.commons.math3.exception.NotStrictlyPositiveException
* if {@code valueAtNumCall <= 0}.
* @throws org.apache.commons.math3.exception.NumberIsTooLargeException
* if {@code valueAtNumCall >= initValue}.
* @throws org.apache.commons.math3.exception.NotStrictlyPositiveException
* if {@code numCall <= 0}.
*/
public static NeighbourhoodSizeFunction exponentialDecay(final double initValue,
final double valueAtNumCall,
final long numCall) {
return new NeighbourhoodSizeFunction() {
/** DecayFunction. */
private final ExponentialDecayFunction decay
= new ExponentialDecayFunction(initValue, valueAtNumCall, numCall);
/** {@inheritDoc} */
public int value(long n) {
return (int) FastMath.rint(decay.value(n));
}
};
}
示例6: quasiSigmoidDecay
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/**
* Creates an sigmoid-like {@code NeighbourhoodSizeFunction function}.
* The function {@code f} will have the following properties:
* <ul>
* <li>{@code f(0) = initValue}</li>
* <li>{@code numCall} is the inflexion point</li>
* <li>{@code slope = f'(numCall)}</li>
* </ul>
*
* @param initValue Initial value, i.e.
* {@link NeighbourhoodSizeFunction#value(long) value(0)}.
* @param slope Value of the function derivative at {@code numCall}.
* @param numCall Inflexion point.
* @return the neighbourhood size function.
* @throws org.apache.commons.math3.exception.NotStrictlyPositiveException
* if {@code initValue <= 0}.
* @throws org.apache.commons.math3.exception.NumberIsTooLargeException
* if {@code slope >= 0}.
* @throws org.apache.commons.math3.exception.NotStrictlyPositiveException
* if {@code numCall <= 0}.
*/
public static NeighbourhoodSizeFunction quasiSigmoidDecay(final double initValue,
final double slope,
final long numCall) {
return new NeighbourhoodSizeFunction() {
/** DecayFunction. */
private final QuasiSigmoidDecayFunction decay
= new QuasiSigmoidDecayFunction(initValue, slope, numCall);
/** {@inheritDoc} */
public int value(long n) {
return (int) FastMath.rint(decay.value(n));
}
};
}
示例7: remainder
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/** {@inheritDoc} */
public SparseGradient remainder(final SparseGradient a) {
// compute k such that lhs % rhs = lhs - k rhs
final double rem = FastMath.IEEEremainder(value, a.value);
final double k = FastMath.rint((value - rem) / a.value);
return subtract(a.multiply(k));
}