當前位置: 首頁>>代碼示例>>Java>>正文


Java FastMath.asinh方法代碼示例

本文整理匯總了Java中org.apache.commons.math3.util.FastMath.asinh方法的典型用法代碼示例。如果您正苦於以下問題:Java FastMath.asinh方法的具體用法?Java FastMath.asinh怎麽用?Java FastMath.asinh使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在org.apache.commons.math3.util.FastMath的用法示例。


在下文中一共展示了FastMath.asinh方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: compute

import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
@Override
protected double compute(double value) {
	return Double.isNaN(value) ? Double.NaN : FastMath.asinh(value);
}
 
開發者ID:transwarpio,項目名稱:rapidminer,代碼行數:5,代碼來源:ArcHyperbolicSine.java

示例2: value

import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/** {@inheritDoc} */
public double value(double x) {
    return FastMath.asinh(x);
}
 
開發者ID:biocompibens,項目名稱:SME,代碼行數:5,代碼來源:Asinh.java

示例3: asinh

import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/** {@inheritDoc} */
public SparseGradient asinh() {
    return new SparseGradient(FastMath.asinh(value), 1.0 / FastMath.sqrt(value * value + 1.0), derivatives);
}
 
開發者ID:biocompibens,項目名稱:SME,代碼行數:5,代碼來源:SparseGradient.java

示例4: asinh

import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/** Compute inverse hyperbolic sine of a derivative structure.
 * @param operand array holding the operand
 * @param operandOffset offset of the operand in its array
 * @param result array where result must be stored (for
 * inverse hyperbolic sine the result array <em>cannot</em> be the input
 * array)
 * @param resultOffset offset of the result in its array
 */
public void asinh(final double[] operand, final int operandOffset,
                 final double[] result, final int resultOffset) {

    // create the function value and derivatives
    double[] function = new double[1 + order];
    final double x = operand[operandOffset];
    function[0] = FastMath.asinh(x);
    if (order > 0) {
        // the nth order derivative of asinh has the form:
        // dn(asinh(x)/dxn = P_n(x) / [x^2 + 1]^((2n-1)/2)
        // where P_n(x) is a degree n-1 polynomial with same parity as n-1
        // P_1(x) = 1, P_2(x) = -x, P_3(x) = 2x^2 - 1 ...
        // the general recurrence relation for P_n is:
        // P_n(x) = (x^2+1) P_(n-1)'(x) - (2n-3) x P_(n-1)(x)
        // as per polynomial parity, we can store coefficients of both P_(n-1) and P_n in the same array
        final double[] p = new double[order];
        p[0] = 1;
        final double x2    = x * x;
        final double f     = 1.0 / (1 + x2);
        double coeff = FastMath.sqrt(f);
        function[1] = coeff * p[0];
        for (int n = 2; n <= order; ++n) {

            // update and evaluate polynomial P_n(x)
            double v = 0;
            p[n - 1] = (1 - n) * p[n - 2];
            for (int k = n - 1; k >= 0; k -= 2) {
                v = v * x2 + p[k];
                if (k > 2) {
                    p[k - 2] = (k - 1) * p[k - 1] + (k - 2 * n) * p[k - 3];
                } else if (k == 2) {
                    p[0] = p[1];
                }
            }
            if ((n & 0x1) == 0) {
                v *= x;
            }

            coeff *= f;
            function[n] = coeff * v;

        }
    }

    // apply function composition
    compose(operand, operandOffset, function, result, resultOffset);

}
 
開發者ID:biocompibens,項目名稱:SME,代碼行數:57,代碼來源:DSCompiler.java


注:本文中的org.apache.commons.math3.util.FastMath.asinh方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。