本文整理匯總了Java中org.apache.commons.math3.util.FastMath.pow方法的典型用法代碼示例。如果您正苦於以下問題:Java FastMath.pow方法的具體用法?Java FastMath.pow怎麽用?Java FastMath.pow使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類org.apache.commons.math3.util.FastMath
的用法示例。
在下文中一共展示了FastMath.pow方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: integrate
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/**
* Calculate defined integral
*/
public ValueType integrate(int significantDigits, CalculatedValue outValue) throws CancelException
{
final double absoluteAccuracy = FastMath.pow(10, -1.0 * significantDigits);
final IntermediateValue re = integrateSimpsons(CalculatedValue.PartType.RE, minValue.getReal(),
maxValue.getReal(), absoluteAccuracy);
if (Double.isNaN(re.value))
{
return outValue.invalidate(CalculatedValue.ErrorType.NOT_A_NUMBER);
}
if (re.complexDetected)
{
final IntermediateValue im = integrateSimpsons(CalculatedValue.PartType.IM, minValue.getReal(),
maxValue.getReal(), absoluteAccuracy);
return outValue.setComplexValue(re.value, im.value);
}
else
{
return outValue.setValue(re.value);
}
}
示例2: powArray
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
public static double[] powArray(double a[],double pow){
double[] apow=new double[a.length];
for(int i=0;i<a.length;i++){
apow[i]=FastMath.pow(a[i], pow);
}
return apow;
}
示例3: powValue2Coeffs
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/**
*
* @param val
* @param pows
* @return
*/
public static double[] powValue2Coeffs(double val,int pows[]){
double[] apow=new double[pows.length];
for(int i=0;i<pows.length;i++){
apow[i]=FastMath.pow(val, pows[i]);
}
return apow;
}
示例4: hermiteMatrix
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/**
*
* @param nPoint
* @return
*/
public static double[][] hermiteMatrix(int nPoint){
int np=2*nPoint-1;
List<double[]>matrix=new ArrayList<double[]>();
//loop on rows
for(int idx=0;idx<=np;idx+=2){
double row1[]=new double[(np+1)];
double row2[]=new double[(np+1)];
//loops on columns
for(int val=np;val>=0;val--){
//first two rows contains 1 where we have 0^0
if(idx==0){
row1[np-val]=FastMath.pow(0,val);
row2[np-val]=FastMath.pow(0,FastMath.abs(val-1));
}
//
else{
int k=idx/2;
row1[np-val]=FastMath.pow(k,val);
row2[np-val]=val*FastMath.pow(k,val-1);
}
}
matrix.add(row1);
matrix.add(row2);
}
return (double[][])matrix.toArray(new double[0][]);
}
示例5: createRadialPolynomial
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/**
* Creates and returns a new radial polynomial (R_nm) given two moments.
*
* @param n 1st moment (order) of the radial polynomial.
* @param m 2nd moment (repetition) of the radial polynomial.
* @return PolynomialFunction representing R_nm
* @throws ArithmeticException If orders are to large and calculation of binomial coefficients fail.
*/
public static PolynomialFunction createRadialPolynomial(final int n, int m) {
m = Math.abs(m); /* Make sure that m is positive. */
String id = n + "-" + m; /* Construct ID for cache lookup. */
/* Try to retrieve the function from cache. */
if (RADIAL_FUNCTION_CACHE.containsKey(id)) {
return RADIAL_FUNCTION_CACHE.get(id);
}
/* Initialize coefficients. */
double[] coefficients = new double[n + 1];
/* Now check if Polynomial 0 (for n-|m| = odd) .*/
if ((n - m) % 2 != 0) {
return new PolynomialFunction(coefficients); /* If (n-m) != even, return 0 function. */
}
int s_max = (n - m) / 2;
double sign = -1.0;
for (int s = 0; s <= s_max; ++s) {
int position = n - 2 * s;
long a = CombinatoricsUtils.binomialCoefficient(n-s, s);
long b = CombinatoricsUtils.binomialCoefficient(n-2*s, s_max - s);
coefficients[position] = (FastMath.pow(sign,s) * a * b);
}
PolynomialFunction function = new PolynomialFunction(coefficients);
RADIAL_FUNCTION_CACHE.put(id, function);
return function;
}
示例6: createInterval
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/** {@inheritDoc} */
public ConfidenceInterval createInterval(int numberOfTrials, int numberOfSuccesses, double confidenceLevel) {
IntervalUtils.checkParameters(numberOfTrials, numberOfSuccesses, confidenceLevel);
final double alpha = (1.0 - confidenceLevel) / 2;
final NormalDistribution normalDistribution = new NormalDistribution();
final double z = normalDistribution.inverseCumulativeProbability(1 - alpha);
final double zSquared = FastMath.pow(z, 2);
final double modifiedNumberOfTrials = numberOfTrials + zSquared;
final double modifiedSuccessesRatio = (1.0 / modifiedNumberOfTrials) * (numberOfSuccesses + 0.5 * zSquared);
final double difference = z *
FastMath.sqrt(1.0 / modifiedNumberOfTrials * modifiedSuccessesRatio *
(1 - modifiedSuccessesRatio));
return new ConfidenceInterval(modifiedSuccessesRatio - difference, modifiedSuccessesRatio + difference,
confidenceLevel);
}
示例7: GammaDistribution
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/**
* Creates a Gamma distribution.
*
* @param rng Random number generator.
* @param shape the shape parameter
* @param scale the scale parameter
* @param inverseCumAccuracy the maximum absolute error in inverse
* cumulative probability estimates (defaults to
* {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}).
* @throws NotStrictlyPositiveException if {@code shape <= 0} or
* {@code scale <= 0}.
* @since 3.1
*/
public GammaDistribution(RandomGenerator rng,
double shape,
double scale,
double inverseCumAccuracy)
throws NotStrictlyPositiveException {
super(rng);
if (shape <= 0) {
throw new NotStrictlyPositiveException(LocalizedFormats.SHAPE, shape);
}
if (scale <= 0) {
throw new NotStrictlyPositiveException(LocalizedFormats.SCALE, scale);
}
this.shape = shape;
this.scale = scale;
this.solverAbsoluteAccuracy = inverseCumAccuracy;
this.shiftedShape = shape + Gamma.LANCZOS_G + 0.5;
final double aux = FastMath.E / (2.0 * FastMath.PI * shiftedShape);
this.densityPrefactor2 = shape * FastMath.sqrt(aux) / Gamma.lanczos(shape);
this.logDensityPrefactor2 = FastMath.log(shape) + 0.5 * FastMath.log(aux) -
FastMath.log(Gamma.lanczos(shape));
this.densityPrefactor1 = this.densityPrefactor2 / scale *
FastMath.pow(shiftedShape, -shape) *
FastMath.exp(shape + Gamma.LANCZOS_G);
this.logDensityPrefactor1 = this.logDensityPrefactor2 - FastMath.log(scale) -
FastMath.log(shiftedShape) * shape +
shape + Gamma.LANCZOS_G;
this.minY = shape + Gamma.LANCZOS_G - FastMath.log(Double.MAX_VALUE);
this.maxLogY = FastMath.log(Double.MAX_VALUE) / (shape - 1.0);
}
示例8: rootN
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/** {@inheritDoc} */
public SparseGradient rootN(final int n) {
if (n == 2) {
return sqrt();
} else if (n == 3) {
return cbrt();
} else {
final double root = FastMath.pow(value, 1.0 / n);
return new SparseGradient(root, 1.0 / (n * FastMath.pow(root, n - 1)), derivatives);
}
}
示例9: density
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/** {@inheritDoc} */
public double density(final double[] vals) throws DimensionMismatchException {
final int dim = getDimension();
if (vals.length != dim) {
throw new DimensionMismatchException(vals.length, dim);
}
return FastMath.pow(2 * FastMath.PI, -0.5 * dim) *
FastMath.pow(covarianceMatrixDeterminant, -0.5) *
getExponentTerm(vals);
}
示例10: pow
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/** Compute power of a double to a derivative structure.
* @param a number to exponentiate
* @param operand array holding the power
* @param operandOffset offset of the power in its array
* @param result array where result must be stored (for
* power the result array <em>cannot</em> be the input
* array)
* @param resultOffset offset of the result in its array
* @since 3.3
*/
public void pow(final double a,
final double[] operand, final int operandOffset,
final double[] result, final int resultOffset) {
// create the function value and derivatives
// [a^x, ln(a) a^x, ln(a)^2 a^x,, ln(a)^3 a^x, ... ]
final double[] function = new double[1 + order];
if (a == 0) {
if (operand[operandOffset] == 0) {
function[0] = 1;
double infinity = Double.POSITIVE_INFINITY;
for (int i = 1; i < function.length; ++i) {
infinity = -infinity;
function[i] = infinity;
}
} else if (operand[operandOffset] < 0) {
Arrays.fill(function, Double.NaN);
}
} else {
function[0] = FastMath.pow(a, operand[operandOffset]);
final double lnA = FastMath.log(a);
for (int i = 1; i < function.length; ++i) {
function[i] = lnA * function[i - 1];
}
}
// apply function composition
compose(operand, operandOffset, function, result, resultOffset);
}
示例11: evaluate
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/**
* Returns the kurtosis of the entries in the specified portion of the
* input array.
* <p>
* See {@link Kurtosis} for details on the computing algorithm.</p>
* <p>
* Throws <code>IllegalArgumentException</code> if the array is null.</p>
*
* @param values the input array
* @param begin index of the first array element to include
* @param length the number of elements to include
* @return the kurtosis of the values or Double.NaN if length is less than 4
* @throws MathIllegalArgumentException if the input array is null or the array
* index parameters are not valid
*/
@Override
public double evaluate(final double[] values,final int begin, final int length)
throws MathIllegalArgumentException {
// Initialize the kurtosis
double kurt = Double.NaN;
if (test(values, begin, length) && length > 3) {
// Compute the mean and standard deviation
Variance variance = new Variance();
variance.incrementAll(values, begin, length);
double mean = variance.moment.m1;
double stdDev = FastMath.sqrt(variance.getResult());
// Sum the ^4 of the distance from the mean divided by the
// standard deviation
double accum3 = 0.0;
for (int i = begin; i < begin + length; i++) {
accum3 += FastMath.pow(values[i] - mean, 4.0);
}
accum3 /= FastMath.pow(stdDev, 4.0d);
// Get N
double n0 = length;
double coefficientOne =
(n0 * (n0 + 1)) / ((n0 - 1) * (n0 - 2) * (n0 - 3));
double termTwo =
(3 * FastMath.pow(n0 - 1, 2.0)) / ((n0 - 2) * (n0 - 3));
// Calculate kurtosis
kurt = (coefficientOne * accum3) - termTwo;
}
return kurt;
}
示例12: nthRoot
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/**
* Computes the n-th roots of this complex number.
* The nth roots are defined by the formula:
* <pre>
* <code>
* z<sub>k</sub> = abs<sup>1/n</sup> (cos(phi + 2πk/n) + i (sin(phi + 2πk/n))
* </code>
* </pre>
* for <i>{@code k=0, 1, ..., n-1}</i>, where {@code abs} and {@code phi}
* are respectively the {@link #abs() modulus} and
* {@link #getArgument() argument} of this complex number.
* <p>
* If one or both parts of this complex number is NaN, a list with just
* one element, {@link #NaN} is returned.
* if neither part is NaN, but at least one part is infinite, the result
* is a one-element list containing {@link #INF}.
*
* @param n Degree of root.
* @return a List of all {@code n}-th roots of {@code this}.
* @throws NotPositiveException if {@code n <= 0}.
* @since 2.0
*/
public List<Complex> nthRoot(int n) throws NotPositiveException {
if (n <= 0) {
throw new NotPositiveException(LocalizedFormats.CANNOT_COMPUTE_NTH_ROOT_FOR_NEGATIVE_N,
n);
}
final List<Complex> result = new ArrayList<Complex>();
if (isNaN) {
result.add(NaN);
return result;
}
if (isInfinite()) {
result.add(INF);
return result;
}
// nth root of abs -- faster / more accurate to use a solver here?
final double nthRootOfAbs = FastMath.pow(abs(), 1.0 / n);
// Compute nth roots of complex number with k = 0, 1, ... n-1
final double nthPhi = getArgument() / n;
final double slice = 2 * FastMath.PI / n;
double innerPart = nthPhi;
for (int k = 0; k < n ; k++) {
// inner part
final double realPart = nthRootOfAbs * FastMath.cos(innerPart);
final double imaginaryPart = nthRootOfAbs * FastMath.sin(innerPart);
result.add(createComplex(realPart, imaginaryPart));
innerPart += slice;
}
return result;
}
示例13: computeInterpolatedStateAndDerivatives
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/** {@inheritDoc} */
@Override
protected void computeInterpolatedStateAndDerivatives(final double theta, final double oneMinusThetaH) {
final double x = interpolatedTime - referenceTime;
final double normalizedAbscissa = x / scalingH;
Arrays.fill(stateVariation, 0.0);
Arrays.fill(interpolatedDerivatives, 0.0);
// apply Taylor formula from high order to low order,
// for the sake of numerical accuracy
final double[][] nData = nordsieck.getDataRef();
for (int i = nData.length - 1; i >= 0; --i) {
final int order = i + 2;
final double[] nDataI = nData[i];
final double power = FastMath.pow(normalizedAbscissa, order);
for (int j = 0; j < nDataI.length; ++j) {
final double d = nDataI[j] * power;
stateVariation[j] += d;
interpolatedDerivatives[j] += order * d;
}
}
for (int j = 0; j < currentState.length; ++j) {
stateVariation[j] += scaled[j] * normalizedAbscissa;
interpolatedState[j] = currentState[j] + stateVariation[j];
interpolatedDerivatives[j] =
(interpolatedDerivatives[j] + scaled[j] * normalizedAbscissa) / x;
}
}
示例14: roundToNumberOfSignificantDigits
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/**
* Procedure rounds the given value to the given number of significant digits see
* http://stackoverflow.com/questions/202302
*
* Note: The maximum double value in Java is on the order of 10^308, while the minimum value is on the order of
* 10^-324. Therefore, you can run into trouble when applying the function roundToSignificantFigures to something
* that's within a few powers of ten of Double.MIN_VALUE.
*
* Consequently, the variable magnitude may become Infinity, and it's all garbage from then on out. Fortunately,
* this is not an insurmountable problem: it is only the factor magnitude that's overflowing. What really matters is
* the product num * magnitude, and that does not overflow. One way of resolving this is by breaking up the
* multiplication by the factor magintude into two steps.
*/
public static double roundToNumberOfSignificantDigits(double num, int n)
{
final double maxPowerOfTen = FastMath.floor(FastMath.log10(Double.MAX_VALUE));
if (num == 0)
{
return 0;
}
try
{
return new BigDecimal(num).round(new MathContext(n, RoundingMode.HALF_EVEN)).doubleValue();
}
catch (ArithmeticException ex)
{
// nothing to do
}
final double d = FastMath.ceil(FastMath.log10(num < 0 ? -num : num));
final int power = n - (int) d;
double firstMagnitudeFactor = 1.0;
double secondMagnitudeFactor = 1.0;
if (power > maxPowerOfTen)
{
firstMagnitudeFactor = FastMath.pow(10.0, maxPowerOfTen);
secondMagnitudeFactor = FastMath.pow(10.0, (double) power - maxPowerOfTen);
}
else
{
firstMagnitudeFactor = FastMath.pow(10.0, (double) power);
}
double toBeRounded = num * firstMagnitudeFactor;
toBeRounded *= secondMagnitudeFactor;
final long shifted = FastMath.round(toBeRounded);
double rounded = ((double) shifted) / firstMagnitudeFactor;
rounded /= secondMagnitudeFactor;
return rounded;
}
示例15: sample
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/** {@inheritDoc} */
@Override
public double sample() {
final double n = random.nextDouble();
return scale / FastMath.pow(n, 1 / shape);
}