當前位置: 首頁>>代碼示例>>Java>>正文


Java FastMath.atanh方法代碼示例

本文整理匯總了Java中org.apache.commons.math3.util.FastMath.atanh方法的典型用法代碼示例。如果您正苦於以下問題:Java FastMath.atanh方法的具體用法?Java FastMath.atanh怎麽用?Java FastMath.atanh使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在org.apache.commons.math3.util.FastMath的用法示例。


在下文中一共展示了FastMath.atanh方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。

示例1: compute

import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
@Override
protected double compute(double value) {
	return Double.isNaN(value) ? Double.NaN : FastMath.atanh(value);
}
 
開發者ID:transwarpio,項目名稱:rapidminer,代碼行數:5,代碼來源:ArcHyperbolicTangent.java

示例2: value

import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/** {@inheritDoc} */
public double value(double x) {
    return FastMath.atanh(x);
}
 
開發者ID:biocompibens,項目名稱:SME,代碼行數:5,代碼來源:Atanh.java

示例3: atanh

import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/** {@inheritDoc} */
public SparseGradient atanh() {
    return new SparseGradient(FastMath.atanh(value), 1.0 / (1.0 - value * value), derivatives);
}
 
開發者ID:biocompibens,項目名稱:SME,代碼行數:5,代碼來源:SparseGradient.java

示例4: atanh

import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/** Compute inverse hyperbolic tangent of a derivative structure.
 * @param operand array holding the operand
 * @param operandOffset offset of the operand in its array
 * @param result array where result must be stored (for
 * inverse hyperbolic tangent the result array <em>cannot</em> be the input
 * array)
 * @param resultOffset offset of the result in its array
 */
public void atanh(final double[] operand, final int operandOffset,
                  final double[] result, final int resultOffset) {

    // create the function value and derivatives
    double[] function = new double[1 + order];
    final double x = operand[operandOffset];
    function[0] = FastMath.atanh(x);
    if (order > 0) {
        // the nth order derivative of atanh has the form:
        // dn(atanh(x)/dxn = Q_n(x) / (1 - x^2)^n
        // where Q_n(x) is a degree n-1 polynomial with same parity as n-1
        // Q_1(x) = 1, Q_2(x) = 2x, Q_3(x) = 6x^2 + 2 ...
        // the general recurrence relation for Q_n is:
        // Q_n(x) = (1-x^2) Q_(n-1)'(x) + 2(n-1) x Q_(n-1)(x)
        // as per polynomial parity, we can store coefficients of both Q_(n-1) and Q_n in the same array
        final double[] q = new double[order];
        q[0] = 1;
        final double x2 = x * x;
        final double f  = 1.0 / (1 - x2);
        double coeff = f;
        function[1] = coeff * q[0];
        for (int n = 2; n <= order; ++n) {

            // update and evaluate polynomial Q_n(x)
            double v = 0;
            q[n - 1] = n * q[n - 2];
            for (int k = n - 1; k >= 0; k -= 2) {
                v = v * x2 + q[k];
                if (k > 2) {
                    q[k - 2] = (k - 1) * q[k - 1] + (2 * n - k + 1) * q[k - 3];
                } else if (k == 2) {
                    q[0] = q[1];
                }
            }
            if ((n & 0x1) == 0) {
                v *= x;
            }

            coeff *= f;
            function[n] = coeff * v;

        }
    }

    // apply function composition
    compose(operand, operandOffset, function, result, resultOffset);

}
 
開發者ID:biocompibens,項目名稱:SME,代碼行數:57,代碼來源:DSCompiler.java


注:本文中的org.apache.commons.math3.util.FastMath.atanh方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。