本文整理匯總了Java中org.apache.commons.math3.util.FastMath.log1p方法的典型用法代碼示例。如果您正苦於以下問題:Java FastMath.log1p方法的具體用法?Java FastMath.log1p怎麽用?Java FastMath.log1p使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類org.apache.commons.math3.util.FastMath
的用法示例。
在下文中一共展示了FastMath.log1p方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Java代碼示例。
示例1: logDensity
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/** {@inheritDoc} **/
@Override
public double logDensity(double x) {
/*
* see the comment in {@link #density(double)} for computation details
*/
if (x < 0) {
return Double.NEGATIVE_INFINITY;
}
final double y = x / scale;
if ((y <= minY) || (FastMath.log(y) >= maxLogY)) {
/*
* Overflow.
*/
final double aux1 = (y - shiftedShape) / shiftedShape;
final double aux2 = shape * (FastMath.log1p(aux1) - aux1);
final double aux3 = -y * (Gamma.LANCZOS_G + 0.5) / shiftedShape +
Gamma.LANCZOS_G + aux2;
return logDensityPrefactor2 - FastMath.log(x) + aux3;
}
/*
* Natural calculation.
*/
return logDensityPrefactor1 - y + FastMath.log(y) * (shape - 1);
}
示例2: logDensity
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/** {@inheritDoc} **/
@Override
public double logDensity(double x) {
recomputeZ();
if (x < 0 || x > 1) {
return Double.NEGATIVE_INFINITY;
} else if (x == 0) {
if (alpha < 1) {
throw new NumberIsTooSmallException(LocalizedFormats.CANNOT_COMPUTE_BETA_DENSITY_AT_0_FOR_SOME_ALPHA, alpha, 1, false);
}
return Double.NEGATIVE_INFINITY;
} else if (x == 1) {
if (beta < 1) {
throw new NumberIsTooSmallException(LocalizedFormats.CANNOT_COMPUTE_BETA_DENSITY_AT_1_FOR_SOME_BETA, beta, 1, false);
}
return Double.NEGATIVE_INFINITY;
} else {
double logX = FastMath.log(x);
double log1mX = FastMath.log1p(-x);
return (alpha - 1) * logX + (beta - 1) * log1mX - z;
}
}
示例3: PascalDistribution
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/**
* Create a Pascal distribution with the given number of successes and
* probability of success.
*
* @param rng Random number generator.
* @param r Number of successes.
* @param p Probability of success.
* @throws NotStrictlyPositiveException if the number of successes is not positive
* @throws OutOfRangeException if the probability of success is not in the
* range {@code [0, 1]}.
* @since 3.1
*/
public PascalDistribution(RandomGenerator rng,
int r,
double p)
throws NotStrictlyPositiveException, OutOfRangeException {
super(rng);
if (r <= 0) {
throw new NotStrictlyPositiveException(LocalizedFormats.NUMBER_OF_SUCCESSES,
r);
}
if (p < 0 || p > 1) {
throw new OutOfRangeException(p, 0, 1);
}
numberOfSuccesses = r;
probabilityOfSuccess = p;
logProbabilityOfSuccess = FastMath.log(p);
log1mProbabilityOfSuccess = FastMath.log1p(-p);
}
示例4: logGammaSum
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/**
* Returns the value of log Γ(a + b) for 1 ≤ a, b ≤ 2. Based on the
* <em>NSWC Library of Mathematics Subroutines</em> double precision
* implementation, {@code DGSMLN}. In {@code BetaTest.testLogGammaSum()},
* this private method is accessed through reflection.
*
* @param a First argument.
* @param b Second argument.
* @return the value of {@code log(Gamma(a + b))}.
* @throws OutOfRangeException if {@code a} or {@code b} is lower than
* {@code 1.0} or greater than {@code 2.0}.
*/
private static double logGammaSum(final double a, final double b)
throws OutOfRangeException {
if ((a < 1.0) || (a > 2.0)) {
throw new OutOfRangeException(a, 1.0, 2.0);
}
if ((b < 1.0) || (b > 2.0)) {
throw new OutOfRangeException(b, 1.0, 2.0);
}
final double x = (a - 1.0) + (b - 1.0);
if (x <= 0.5) {
return Gamma.logGamma1p(1.0 + x);
} else if (x <= 1.5) {
return Gamma.logGamma1p(x) + FastMath.log1p(x);
} else {
return Gamma.logGamma1p(x - 1.0) + FastMath.log(x * (1.0 + x));
}
}
示例5: log1p
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/** Computes shifted logarithm of a derivative structure.
* @param operand array holding the operand
* @param operandOffset offset of the operand in its array
* @param result array where result must be stored (for
* shifted logarithm the result array <em>cannot</em> be the input array)
* @param resultOffset offset of the result in its array
*/
public void log1p(final double[] operand, final int operandOffset,
final double[] result, final int resultOffset) {
// create the function value and derivatives
double[] function = new double[1 + order];
function[0] = FastMath.log1p(operand[operandOffset]);
if (order > 0) {
double inv = 1.0 / (1.0 + operand[operandOffset]);
double xk = inv;
for (int i = 1; i <= order; ++i) {
function[i] = xk;
xk *= -i * inv;
}
}
// apply function composition
compose(operand, operandOffset, function, result, resultOffset);
}
示例6: GeometricDistribution
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/**
* Creates a geometric distribution.
*
* @param rng Random number generator.
* @param p Probability of success.
* @throws OutOfRangeException if {@code p <= 0} or {@code p > 1}.
*/
public GeometricDistribution(RandomGenerator rng, double p) {
super(rng);
if (p <= 0 || p > 1) {
throw new OutOfRangeException(LocalizedFormats.OUT_OF_RANGE_LEFT, p, 0, 1);
}
probabilityOfSuccess = p;
logProbabilityOfSuccess = FastMath.log(p);
log1mProbabilityOfSuccess = FastMath.log1p(-p);
}
示例7: algorithmBB
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/**
* Returns one sample using Cheng's BB algorithm, when both α and β are greater than 1.
* @param random random generator to use
* @param a0 distribution first shape parameter (α)
* @param a min(α, β) where α, β are the two distribution shape parameters
* @param b max(α, β) where α, β are the two distribution shape parameters
* @return sampled value
*/
private static double algorithmBB(RandomGenerator random,
final double a0,
final double a,
final double b) {
final double alpha = a + b;
final double beta = FastMath.sqrt((alpha - 2.) / (2. * a * b - alpha));
final double gamma = a + 1. / beta;
double r;
double w;
double t;
do {
final double u1 = random.nextDouble();
final double u2 = random.nextDouble();
final double v = beta * (FastMath.log(u1) - FastMath.log1p(-u1));
w = a * FastMath.exp(v);
final double z = u1 * u1 * u2;
r = gamma * v - 1.3862944;
final double s = a + r - w;
if (s + 2.609438 >= 5 * z) {
break;
}
t = FastMath.log(z);
if (s >= t) {
break;
}
} while (r + alpha * (FastMath.log(alpha) - FastMath.log(b + w)) < t);
w = FastMath.min(w, Double.MAX_VALUE);
return Precision.equals(a, a0) ? w / (b + w) : b / (b + w);
}
示例8: helper1
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/**
* Helper function that calculates {@code log(1+x)/x}.
* <p>
* A Taylor series expansion is used, if x is close to 0.
*
* @param x a value larger than or equal to -1
* @return {@code log(1+x)/x}
*/
static double helper1(final double x) {
if (FastMath.abs(x)>1e-8) {
return FastMath.log1p(x)/x;
}
else {
return 1.-x*((1./2.)-x*((1./3.)-x*(1./4.)));
}
}
示例9: logGamma1p
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/**
* Returns the value of log Γ(1 + x) for -0.5 ≤ x ≤ 1.5.
* This implementation is based on the double precision implementation in
* the <em>NSWC Library of Mathematics Subroutines</em>, {@code DGMLN1}.
*
* @param x Argument.
* @return The value of {@code log(Gamma(1 + x))}.
* @throws NumberIsTooSmallException if {@code x < -0.5}.
* @throws NumberIsTooLargeException if {@code x > 1.5}.
* @since 3.1
*/
public static double logGamma1p(final double x)
throws NumberIsTooSmallException, NumberIsTooLargeException {
if (x < -0.5) {
throw new NumberIsTooSmallException(x, -0.5, true);
}
if (x > 1.5) {
throw new NumberIsTooLargeException(x, 1.5, true);
}
return -FastMath.log1p(invGamma1pm1(x));
}
示例10: logGammaMinusLogGammaSum
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/**
* Returns the value of log[Γ(b) / Γ(a + b)] for a ≥ 0 and b ≥ 10. Based on
* the <em>NSWC Library of Mathematics Subroutines</em> double precision
* implementation, {@code DLGDIV}. In
* {@code BetaTest.testLogGammaMinusLogGammaSum()}, this private method is
* accessed through reflection.
*
* @param a First argument.
* @param b Second argument.
* @return the value of {@code log(Gamma(b) / Gamma(a + b))}.
* @throws NumberIsTooSmallException if {@code a < 0.0} or {@code b < 10.0}.
*/
private static double logGammaMinusLogGammaSum(final double a,
final double b)
throws NumberIsTooSmallException {
if (a < 0.0) {
throw new NumberIsTooSmallException(a, 0.0, true);
}
if (b < 10.0) {
throw new NumberIsTooSmallException(b, 10.0, true);
}
/*
* d = a + b - 0.5
*/
final double d;
final double w;
if (a <= b) {
d = b + (a - 0.5);
w = deltaMinusDeltaSum(a, b);
} else {
d = a + (b - 0.5);
w = deltaMinusDeltaSum(b, a);
}
final double u = d * FastMath.log1p(a / b);
final double v = a * (FastMath.log(b) - 1.0);
return u <= v ? (w - u) - v : (w - v) - u;
}
示例11: density
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/** {@inheritDoc} */
public double density(double x) {
/* The present method must return the value of
*
* 1 x a - x
* ---------- (-) exp(---)
* x Gamma(a) b b
*
* where a is the shape parameter, and b the scale parameter.
* Substituting the Lanczos approximation of Gamma(a) leads to the
* following expression of the density
*
* a e 1 y a
* - sqrt(------------------) ---- (-----------) exp(a - y + g),
* x 2 pi (a + g + 0.5) L(a) a + g + 0.5
*
* where y = x / b. The above formula is the "natural" computation, which
* is implemented when no overflow is likely to occur. If overflow occurs
* with the natural computation, the following identity is used. It is
* based on the BOOST library
* http://www.boost.org/doc/libs/1_35_0/libs/math/doc/sf_and_dist/html/math_toolkit/special/sf_gamma/igamma.html
* Formula (15) needs adaptations, which are detailed below.
*
* y a
* (-----------) exp(a - y + g)
* a + g + 0.5
* y - a - g - 0.5 y (g + 0.5)
* = exp(a log1pm(---------------) - ----------- + g),
* a + g + 0.5 a + g + 0.5
*
* where log1pm(z) = log(1 + z) - z. Therefore, the value to be
* returned is
*
* a e 1
* - sqrt(------------------) ----
* x 2 pi (a + g + 0.5) L(a)
* y - a - g - 0.5 y (g + 0.5)
* * exp(a log1pm(---------------) - ----------- + g).
* a + g + 0.5 a + g + 0.5
*/
if (x < 0) {
return 0;
}
final double y = x / scale;
if ((y <= minY) || (FastMath.log(y) >= maxLogY)) {
/*
* Overflow.
*/
final double aux1 = (y - shiftedShape) / shiftedShape;
final double aux2 = shape * (FastMath.log1p(aux1) - aux1);
final double aux3 = -y * (Gamma.LANCZOS_G + 0.5) / shiftedShape +
Gamma.LANCZOS_G + aux2;
return densityPrefactor2 / x * FastMath.exp(aux3);
}
/*
* Natural calculation.
*/
return densityPrefactor1 * FastMath.exp(-y) * FastMath.pow(y, shape - 1);
}
示例12: value
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/** {@inheritDoc} */
public double value(double x) {
return FastMath.log1p(x);
}
示例13: log1p
import org.apache.commons.math3.util.FastMath; //導入方法依賴的package包/類
/** {@inheritDoc} */
public SparseGradient log1p() {
return new SparseGradient(FastMath.log1p(value), 1.0 / (1.0 + value), derivatives);
}