当前位置: 首页>>代码示例 >>用法及示例精选 >>正文


R broom tidy.nls 整理 a(n) nls 对象


Tidy 总结了有关模型组件的信息。模型组件可能是回归中的单个项、单个假设、聚类或类。 tidy 所认为的模型组件的确切含义因模型而异,但通常是不言而喻的。如果模型具有多种不同类型的组件,您将需要指定要返回哪些组件。

用法

# S3 method for nls
tidy(x, conf.int = FALSE, conf.level = 0.95, ...)

参数

x

stats::nls() 返回的 nls 对象。

conf.int

逻辑指示是否在整理的输出中包含置信区间。默认为 FALSE

conf.level

用于置信区间的置信水平(如果 conf.int = TRUE )。必须严格大于 0 且小于 1。默认为 0.95,对应于 95% 的置信区间。

...

附加参数。不曾用过。仅需要匹配通用签名。注意:拼写错误的参数将被吸收到 ... 中,并被忽略。如果拼写错误的参数有默认值,则将使用默认值。例如,如果您传递 conf.lvel = 0.9 ,所有计算将使用 conf.level = 0.95 进行。这里有两个异常:

  • tidy() 方法在提供 exponentiate 参数时会发出警告(如果该参数将被忽略)。

  • augment() 方法在提供 newdata 参数时会发出警告(如果该参数将被忽略)。

也可以看看

tidystats::nls()stats::summary.nls()

其他 nls 整理器:augment.nls()glance.nls()

带有列的 tibble::tibble()

conf.high

估计置信区间的上限。

conf.low

估计置信区间的下限。

estimate

回归项的估计值。

p.value

与观察到的统计量相关的两侧 p 值。

statistic

在回归项非零的假设中使用的 T-statistic 的值。

std.error

回归项的标准误差。

term

回归项的名称。

例子


# fit model
n <- nls(mpg ~ k * e^wt, data = mtcars, start = list(k = 1, e = 2))

# summarize model fit with tidiers + visualization
tidy(n)
#> # A tibble: 2 × 5
#>   term  estimate std.error statistic  p.value
#>   <chr>    <dbl>     <dbl>     <dbl>    <dbl>
#> 1 k       49.7      3.79        13.1 5.96e-14
#> 2 e        0.746    0.0199      37.5 8.86e-27
augment(n)
#> # A tibble: 32 × 4
#>      mpg    wt .fitted .resid
#>    <dbl> <dbl>   <dbl>  <dbl>
#>  1  21    2.62    23.0 -2.01 
#>  2  21    2.88    21.4 -0.352
#>  3  22.8  2.32    25.1 -2.33 
#>  4  21.4  3.22    19.3  2.08 
#>  5  18.7  3.44    18.1  0.611
#>  6  18.1  3.46    18.0  0.117
#>  7  14.3  3.57    17.4 -3.11 
#>  8  24.4  3.19    19.5  4.93 
#>  9  22.8  3.15    19.7  3.10 
#> 10  19.2  3.44    18.1  1.11 
#> # ℹ 22 more rows
glance(n)
#> # A tibble: 1 × 9
#>   sigma isConv     finTol logLik   AIC   BIC deviance df.residual  nobs
#>   <dbl> <lgl>       <dbl>  <dbl> <dbl> <dbl>    <dbl>       <int> <int>
#> 1  2.67 TRUE   0.00000204  -75.8  158.  162.     214.          30    32

library(ggplot2)

ggplot(augment(n), aes(wt, mpg)) +
  geom_point() +
  geom_line(aes(y = .fitted))


newdata <- head(mtcars)
newdata$wt <- newdata$wt + 1

augment(n, newdata = newdata)
#> # A tibble: 6 × 13
#>   .rownames      mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear
#>   <chr>        <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Mazda RX4     21       6   160   110  3.9   3.62  16.5     0     1     4
#> 2 Mazda RX4 W…  21       6   160   110  3.9   3.88  17.0     0     1     4
#> 3 Datsun 710    22.8     4   108    93  3.85  3.32  18.6     1     1     4
#> 4 Hornet 4 Dr…  21.4     6   258   110  3.08  4.22  19.4     1     0     3
#> 5 Hornet Spor…  18.7     8   360   175  3.15  4.44  17.0     0     0     3
#> 6 Valiant       18.1     6   225   105  2.76  4.46  20.2     1     0     3
#> # ℹ 2 more variables: carb <dbl>, .fitted <dbl>

相关用法


注:本文由纯净天空筛选整理自大神的英文原创作品 Tidy a(n) nls object。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。