当前位置: 首页>>代码示例 >>用法及示例精选 >>正文


R broom tidy.betareg 整理 a(n) betareg 对象


Tidy 总结了有关模型组件的信息。模型组件可能是回归中的单个项、单个假设、聚类或类。 tidy 所认为的模型组件的确切含义因模型而异,但通常是不言而喻的。如果模型具有多种不同类型的组件,您将需要指定要返回哪些组件。

用法

# S3 method for betareg
tidy(x, conf.int = FALSE, conf.level = 0.95, ...)

参数

x

通过调用 betareg::betareg() 生成的 betareg 对象。

conf.int

逻辑指示是否在整理的输出中包含置信区间。默认为 FALSE

conf.level

用于置信区间的置信水平(如果 conf.int = TRUE )。必须严格大于 0 且小于 1。默认为 0.95,对应于 95% 的置信区间。

...

附加参数。不曾用过。仅需要匹配通用签名。注意:拼写错误的参数将被吸收到 ... 中,并被忽略。如果拼写错误的参数有默认值,则将使用默认值。例如,如果您传递 conf.lvel = 0.9 ,所有计算将使用 conf.level = 0.95 进行。这里有两个异常:

  • tidy() 方法在提供 exponentiate 参数时会发出警告(如果该参数将被忽略)。

  • augment() 方法在提供 newdata 参数时会发出警告(如果该参数将被忽略)。

细节

小标题对于回归中的每一项都有一行。 component 列指示特定项是否用于建模 "mean""precision" 。这里的精度是方差的倒数,通常称为phi。至少一项将用于对精度 phi 进行建模。

也可以看看

带有列的 tibble::tibble()

conf.high

估计置信区间的上限。

conf.low

估计置信区间的下限。

estimate

回归项的估计值。

p.value

与观察到的统计量相关的两侧 p 值。

statistic

在回归项非零的假设中使用的 T-statistic 的值。

std.error

回归项的标准误差。

term

回归项的名称。

component

是否使用特定项对回归中的平均值或精度进行建模。查看具体信息。

例子


# load libraries for models and data
library(betareg)

# load dats
data("GasolineYield", package = "betareg")

# fit model
mod <- betareg(yield ~ batch + temp, data = GasolineYield)

mod
#> 
#> Call:
#> betareg(formula = yield ~ batch + temp, data = GasolineYield)
#> 
#> Coefficients (mean model with logit link):
#> (Intercept)       batch1       batch2       batch3       batch4  
#>    -6.15957      1.72773      1.32260      1.57231      1.05971  
#>      batch5       batch6       batch7       batch8       batch9  
#>     1.13375      1.04016      0.54369      0.49590      0.38579  
#>        temp  
#>     0.01097  
#> 
#> Phi coefficients (precision model with identity link):
#> (phi)  
#> 440.3  
#> 

# summarize model fit with tidiers
tidy(mod)
#> # A tibble: 12 × 6
#>    component term        estimate  std.error statistic   p.value
#>    <chr>     <chr>          <dbl>      <dbl>     <dbl>     <dbl>
#>  1 mean      (Intercept)  -6.16     0.182       -33.8  3.44e-250
#>  2 mean      batch1        1.73     0.101        17.1  2.59e- 65
#>  3 mean      batch2        1.32     0.118        11.2  3.34e- 29
#>  4 mean      batch3        1.57     0.116        13.5  8.81e- 42
#>  5 mean      batch4        1.06     0.102        10.4  4.06e- 25
#>  6 mean      batch5        1.13     0.104        11.0  6.52e- 28
#>  7 mean      batch6        1.04     0.106         9.81 1.03e- 22
#>  8 mean      batch7        0.544    0.109         4.98 6.29e-  7
#>  9 mean      batch8        0.496    0.109         4.55 5.30e-  6
#> 10 mean      batch9        0.386    0.119         3.25 1.14e-  3
#> 11 mean      temp          0.0110   0.000413     26.6  1.26e-155
#> 12 precision (phi)       440.     110.            4.00 6.29e-  5
tidy(mod, conf.int = TRUE)
#> # A tibble: 12 × 8
#>    component term        estimate  std.error statistic   p.value conf.low
#>    <chr>     <chr>          <dbl>      <dbl>     <dbl>     <dbl>    <dbl>
#>  1 mean      (Intercept)  -6.16     0.182       -33.8  3.44e-250  -6.52  
#>  2 mean      batch1        1.73     0.101        17.1  2.59e- 65   1.53  
#>  3 mean      batch2        1.32     0.118        11.2  3.34e- 29   1.09  
#>  4 mean      batch3        1.57     0.116        13.5  8.81e- 42   1.34  
#>  5 mean      batch4        1.06     0.102        10.4  4.06e- 25   0.859 
#>  6 mean      batch5        1.13     0.104        11.0  6.52e- 28   0.931 
#>  7 mean      batch6        1.04     0.106         9.81 1.03e- 22   0.832 
#>  8 mean      batch7        0.544    0.109         4.98 6.29e-  7   0.330 
#>  9 mean      batch8        0.496    0.109         4.55 5.30e-  6   0.282 
#> 10 mean      batch9        0.386    0.119         3.25 1.14e-  3   0.153 
#> 11 mean      temp          0.0110   0.000413     26.6  1.26e-155   0.0102
#> 12 precision (phi)       440.     110.            4.00 6.29e-  5 225.    
#> # ℹ 1 more variable: conf.high <dbl>
tidy(mod, conf.int = TRUE, conf.level = .99)
#> # A tibble: 12 × 8
#>    component term        estimate  std.error statistic   p.value  conf.low
#>    <chr>     <chr>          <dbl>      <dbl>     <dbl>     <dbl>     <dbl>
#>  1 mean      (Intercept)  -6.16     0.182       -33.8  3.44e-250  -6.63   
#>  2 mean      batch1        1.73     0.101        17.1  2.59e- 65   1.47   
#>  3 mean      batch2        1.32     0.118        11.2  3.34e- 29   1.02   
#>  4 mean      batch3        1.57     0.116        13.5  8.81e- 42   1.27   
#>  5 mean      batch4        1.06     0.102        10.4  4.06e- 25   0.796  
#>  6 mean      batch5        1.13     0.104        11.0  6.52e- 28   0.867  
#>  7 mean      batch6        1.04     0.106         9.81 1.03e- 22   0.767  
#>  8 mean      batch7        0.544    0.109         4.98 6.29e-  7   0.263  
#>  9 mean      batch8        0.496    0.109         4.55 5.30e-  6   0.215  
#> 10 mean      batch9        0.386    0.119         3.25 1.14e-  3   0.0803 
#> 11 mean      temp          0.0110   0.000413     26.6  1.26e-155   0.00990
#> 12 precision (phi)       440.     110.            4.00 6.29e-  5 157.     
#> # ℹ 1 more variable: conf.high <dbl>

augment(mod)
#> # A tibble: 32 × 6
#>    yield batch  temp .fitted .resid   .cooksd
#>    <dbl> <fct> <dbl>   <dbl>  <dbl>     <dbl>
#>  1 0.122 1       205  0.101   1.59  0.0791   
#>  2 0.223 1       275  0.195   1.66  0.0917   
#>  3 0.347 1       345  0.343   0.211 0.00155  
#>  4 0.457 1       407  0.508  -2.88  0.606    
#>  5 0.08  2       218  0.0797  0.109 0.0000168
#>  6 0.131 2       273  0.137  -0.365 0.00731  
#>  7 0.266 2       347  0.263   0.260 0.00523  
#>  8 0.074 3       212  0.0943 -1.77  0.0805   
#>  9 0.182 3       272  0.167   1.02  0.0441   
#> 10 0.304 3       340  0.298   0.446 0.0170   
#> # ℹ 22 more rows

glance(mod)
#> # A tibble: 1 × 7
#>   pseudo.r.squared df.null logLik   AIC   BIC df.residual  nobs
#>              <dbl>   <dbl>  <dbl> <dbl> <dbl>       <int> <int>
#> 1            0.962      30   84.8 -146. -128.          20    32

相关用法


注:本文由纯净天空筛选整理自大神的英文原创作品 Tidy a(n) betareg object。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。