Tidy 总结了有关模型组件的信息。模型组件可能是回归中的单个项、单个假设、聚类或类。 tidy 所认为的模型组件的确切含义因模型而异,但通常是不言而喻的。如果模型具有多种不同类型的组件,您将需要指定要返回哪些组件。
参数
- x
-
通过调用
betareg::betareg()
生成的betareg
对象。 - conf.int
-
逻辑指示是否在整理的输出中包含置信区间。默认为
FALSE
。 - conf.level
-
用于置信区间的置信水平(如果
conf.int = TRUE
)。必须严格大于 0 且小于 1。默认为 0.95,对应于 95% 的置信区间。 - ...
-
附加参数。不曾用过。仅需要匹配通用签名。注意:拼写错误的参数将被吸收到
...
中,并被忽略。如果拼写错误的参数有默认值,则将使用默认值。例如,如果您传递conf.lvel = 0.9
,所有计算将使用conf.level = 0.95
进行。这里有两个异常:
细节
小标题对于回归中的每一项都有一行。 component
列指示特定项是否用于建模 "mean"
或 "precision"
。这里的精度是方差的倒数,通常称为phi
。至少一项将用于对精度 phi
进行建模。
值
带有列的 tibble::tibble()
:
- conf.high
-
估计置信区间的上限。
- conf.low
-
估计置信区间的下限。
- estimate
-
回归项的估计值。
- p.value
-
与观察到的统计量相关的两侧 p 值。
- statistic
-
在回归项非零的假设中使用的 T-statistic 的值。
- std.error
-
回归项的标准误差。
- term
-
回归项的名称。
- component
-
是否使用特定项对回归中的平均值或精度进行建模。查看具体信息。
例子
# load libraries for models and data
library(betareg)
# load dats
data("GasolineYield", package = "betareg")
# fit model
mod <- betareg(yield ~ batch + temp, data = GasolineYield)
mod
#>
#> Call:
#> betareg(formula = yield ~ batch + temp, data = GasolineYield)
#>
#> Coefficients (mean model with logit link):
#> (Intercept) batch1 batch2 batch3 batch4
#> -6.15957 1.72773 1.32260 1.57231 1.05971
#> batch5 batch6 batch7 batch8 batch9
#> 1.13375 1.04016 0.54369 0.49590 0.38579
#> temp
#> 0.01097
#>
#> Phi coefficients (precision model with identity link):
#> (phi)
#> 440.3
#>
# summarize model fit with tidiers
tidy(mod)
#> # A tibble: 12 × 6
#> component term estimate std.error statistic p.value
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 mean (Intercept) -6.16 0.182 -33.8 3.44e-250
#> 2 mean batch1 1.73 0.101 17.1 2.59e- 65
#> 3 mean batch2 1.32 0.118 11.2 3.34e- 29
#> 4 mean batch3 1.57 0.116 13.5 8.81e- 42
#> 5 mean batch4 1.06 0.102 10.4 4.06e- 25
#> 6 mean batch5 1.13 0.104 11.0 6.52e- 28
#> 7 mean batch6 1.04 0.106 9.81 1.03e- 22
#> 8 mean batch7 0.544 0.109 4.98 6.29e- 7
#> 9 mean batch8 0.496 0.109 4.55 5.30e- 6
#> 10 mean batch9 0.386 0.119 3.25 1.14e- 3
#> 11 mean temp 0.0110 0.000413 26.6 1.26e-155
#> 12 precision (phi) 440. 110. 4.00 6.29e- 5
tidy(mod, conf.int = TRUE)
#> # A tibble: 12 × 8
#> component term estimate std.error statistic p.value conf.low
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 mean (Intercept) -6.16 0.182 -33.8 3.44e-250 -6.52
#> 2 mean batch1 1.73 0.101 17.1 2.59e- 65 1.53
#> 3 mean batch2 1.32 0.118 11.2 3.34e- 29 1.09
#> 4 mean batch3 1.57 0.116 13.5 8.81e- 42 1.34
#> 5 mean batch4 1.06 0.102 10.4 4.06e- 25 0.859
#> 6 mean batch5 1.13 0.104 11.0 6.52e- 28 0.931
#> 7 mean batch6 1.04 0.106 9.81 1.03e- 22 0.832
#> 8 mean batch7 0.544 0.109 4.98 6.29e- 7 0.330
#> 9 mean batch8 0.496 0.109 4.55 5.30e- 6 0.282
#> 10 mean batch9 0.386 0.119 3.25 1.14e- 3 0.153
#> 11 mean temp 0.0110 0.000413 26.6 1.26e-155 0.0102
#> 12 precision (phi) 440. 110. 4.00 6.29e- 5 225.
#> # ℹ 1 more variable: conf.high <dbl>
tidy(mod, conf.int = TRUE, conf.level = .99)
#> # A tibble: 12 × 8
#> component term estimate std.error statistic p.value conf.low
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 mean (Intercept) -6.16 0.182 -33.8 3.44e-250 -6.63
#> 2 mean batch1 1.73 0.101 17.1 2.59e- 65 1.47
#> 3 mean batch2 1.32 0.118 11.2 3.34e- 29 1.02
#> 4 mean batch3 1.57 0.116 13.5 8.81e- 42 1.27
#> 5 mean batch4 1.06 0.102 10.4 4.06e- 25 0.796
#> 6 mean batch5 1.13 0.104 11.0 6.52e- 28 0.867
#> 7 mean batch6 1.04 0.106 9.81 1.03e- 22 0.767
#> 8 mean batch7 0.544 0.109 4.98 6.29e- 7 0.263
#> 9 mean batch8 0.496 0.109 4.55 5.30e- 6 0.215
#> 10 mean batch9 0.386 0.119 3.25 1.14e- 3 0.0803
#> 11 mean temp 0.0110 0.000413 26.6 1.26e-155 0.00990
#> 12 precision (phi) 440. 110. 4.00 6.29e- 5 157.
#> # ℹ 1 more variable: conf.high <dbl>
augment(mod)
#> # A tibble: 32 × 6
#> yield batch temp .fitted .resid .cooksd
#> <dbl> <fct> <dbl> <dbl> <dbl> <dbl>
#> 1 0.122 1 205 0.101 1.59 0.0791
#> 2 0.223 1 275 0.195 1.66 0.0917
#> 3 0.347 1 345 0.343 0.211 0.00155
#> 4 0.457 1 407 0.508 -2.88 0.606
#> 5 0.08 2 218 0.0797 0.109 0.0000168
#> 6 0.131 2 273 0.137 -0.365 0.00731
#> 7 0.266 2 347 0.263 0.260 0.00523
#> 8 0.074 3 212 0.0943 -1.77 0.0805
#> 9 0.182 3 272 0.167 1.02 0.0441
#> 10 0.304 3 340 0.298 0.446 0.0170
#> # ℹ 22 more rows
glance(mod)
#> # A tibble: 1 × 7
#> pseudo.r.squared df.null logLik AIC BIC df.residual nobs
#> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <int>
#> 1 0.962 30 84.8 -146. -128. 20 32
相关用法
- R broom tidy.betamfx 整理 a(n) betamfx 对象
- R broom tidy.biglm 整理 a(n) biglm 对象
- R broom tidy.btergm 整理 a(n) btergm 对象
- R broom tidy.boot 整理 a(n) 引导对象
- R broom tidy.binDesign 整理 a(n) binDesign 对象
- R broom tidy.binWidth 整理 a(n) binWidth 对象
- R broom tidy.robustbase.glmrob 整理 a(n) glmrob 对象
- R broom tidy.acf 整理 a(n) acf 对象
- R broom tidy.robustbase.lmrob 整理 a(n) lmrob 对象
- R broom tidy.garch 整理 a(n) garch 对象
- R broom tidy.rq 整理 a(n) rq 对象
- R broom tidy.kmeans 整理 a(n) kmeans 对象
- R broom tidy.anova 整理 a(n) anova 对象
- R broom tidy.cv.glmnet 整理 a(n) cv.glmnet 对象
- R broom tidy.roc 整理 a(n) roc 对象
- R broom tidy.poLCA 整理 a(n) poLCA 对象
- R broom tidy.emmGrid 整理 a(n) emmGrid 对象
- R broom tidy.Kendall 整理 a(n) Kendall 对象
- R broom tidy.survreg 整理 a(n) survreg 对象
- R broom tidy.ergm 整理 a(n) ergm 对象
- R broom tidy.pairwise.htest 整理 a(n)pairwise.htest 对象
- R broom tidy.coeftest 整理 a(n) coeftest 对象
- R broom tidy.polr 整理 a(n) polr 对象
- R broom tidy.map 整理 a(n) Map对象
- R broom tidy.survexp 整理 a(n) survexp 对象
注:本文由纯净天空筛选整理自等大神的英文原创作品 Tidy a(n) betareg object。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。