当前位置: 首页>>代码示例 >>用法及示例精选 >>正文


R broom glance.lmodel2 浏览 a(n) lmodel2 对象


Glance 接受模型对象并返回 tibble::tibble(),其中仅包含一行模型摘要。摘要通常是拟合优度度量、残差假设检验的 p 值或模型收敛信息。

Glance 永远不会返返回自对建模函数的原始调用的信息。这包括建模函数的名称或传递给建模函数的任何参数。

Glance 不计算汇总度量。相反,它将这些计算外包给适当的方法并将结果收集在一起。有时拟合优度测量是不确定的。在这些情况下,该度量将报告为 NA

无论模型矩阵是否秩亏,Glance 都会返回相同的列数。如果是这样,则不再具有明确定义值的列中的条目将使用适当类型的 NA 进行填充。

用法

# S3 method for lmodel2
glance(x, ...)

参数

x

lmodel2::lmodel2() 返回的 lmodel2 对象。

...

附加参数。不曾用过。仅需要匹配通用签名。注意:拼写错误的参数将被吸收到 ... 中,并被忽略。如果拼写错误的参数有默认值,则将使用默认值。例如,如果您传递 conf.lvel = 0.9 ,所有计算将使用 conf.level = 0.95 进行。这里有两个异常:

  • tidy() 方法在提供 exponentiate 参数时会发出警告(如果该参数将被忽略)。

  • augment() 方法在提供 newdata 参数时会发出警告(如果该参数将被忽略)。

也可以看看

glance() , lmodel2::lmodel2()

其他 lmodel2 整理器:tidy.lmodel2()

恰好只有一行和一列的 tibble::tibble()

nobs

使用的观察数。

p.value

对应于检验统计量的 P 值。

r.squared

R 平方统计量,或模型解释的变异百分比。也称为决定系数。

theta

OLS 线 `lm(y ~ x)` 和 `lm(x ~ y)` 之间的角度

H

用于计算长轴斜率置信区间的 H 统计量

例子


# load libraries for models and data
library(lmodel2)

data(mod2ex2)
Ex2.res <- lmodel2(Prey ~ Predators, data = mod2ex2, "relative", "relative", 99)
Ex2.res
#> 
#> Model II regression
#> 
#> Call: lmodel2(formula = Prey ~ Predators, data = mod2ex2, range.y
#> = "relative", range.x = "relative", nperm = 99)
#> 
#> n = 20   r = 0.8600787   r-square = 0.7397354 
#> Parametric P-values:   2-tailed = 1.161748e-06    1-tailed = 5.808741e-07 
#> Angle between the two OLS regression lines = 5.106227 degrees
#> 
#> Permutation tests of OLS, MA, RMA slopes: 1-tailed, tail corresponding to sign
#> A permutation test of r is equivalent to a permutation test of the OLS slope
#> P-perm for SMA = NA because the SMA slope cannot be tested
#> 
#> Regression results
#>   Method Intercept    Slope Angle (degrees) P-perm (1-tailed)
#> 1    OLS  20.02675 2.631527        69.19283              0.01
#> 2     MA  13.05968 3.465907        73.90584              0.01
#> 3    SMA  16.45205 3.059635        71.90073                NA
#> 4    RMA  17.25651 2.963292        71.35239              0.01
#> 
#> Confidence intervals
#>   Method 2.5%-Intercept 97.5%-Intercept 2.5%-Slope 97.5%-Slope
#> 1    OLS      12.490993        27.56251   1.858578    3.404476
#> 2     MA       1.347422        19.76310   2.663101    4.868572
#> 3    SMA       9.195287        22.10353   2.382810    3.928708
#> 4    RMA       8.962997        23.84493   2.174260    3.956527
#> 
#> Eigenvalues: 269.8212 6.418234 
#> 
#> H statistic used for computing C.I. of MA: 0.006120651 
#> 

# summarize model fit with tidiers + visualization
tidy(Ex2.res)
#> # A tibble: 8 × 6
#>   method term      estimate conf.low conf.high p.value
#>   <chr>  <chr>        <dbl>    <dbl>     <dbl>   <dbl>
#> 1 MA     Intercept    13.1      1.35     19.8     0.01
#> 2 MA     Slope         3.47     2.66      4.87    0.01
#> 3 OLS    Intercept    20.0     12.5      27.6     0.01
#> 4 OLS    Slope         2.63     1.86      3.40    0.01
#> 5 RMA    Intercept    17.3      8.96     23.8     0.01
#> 6 RMA    Slope         2.96     2.17      3.96    0.01
#> 7 SMA    Intercept    16.5      9.20     22.1    NA   
#> 8 SMA    Slope         3.06     2.38      3.93   NA   
glance(Ex2.res)
#> # A tibble: 1 × 5
#>   r.squared theta    p.value       H  nobs
#>       <dbl> <dbl>      <dbl>   <dbl> <int>
#> 1     0.740  5.11 0.00000116 0.00612    20

# this allows coefficient plots with ggplot2
library(ggplot2)

ggplot(tidy(Ex2.res), aes(estimate, term, color = method)) +
  geom_point() +
  geom_errorbarh(aes(xmin = conf.low, xmax = conf.high)) +
  geom_errorbarh(aes(xmin = conf.low, xmax = conf.high))

相关用法


注:本文由纯净天空筛选整理自大神的英文原创作品 Glance at a(n) lmodel2 object。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。