当前位置: 首页>>代码示例 >>用法及示例精选 >>正文


Python PyTorch ifft2用法及代码示例


本文简要介绍python语言中 torch.fft.ifft2 的用法。

用法:

torch.fft.ifft2(input, s=None, dim=(- 2, - 1), norm=None, *, out=None) → Tensor

参数

  • input(Tensor) -输入张量

  • s(元组[int],可选的) -转换维度中的信号大小。如果给定,每个维度 dim[i] 将在计算 IFFT 之前补零或修剪到长度 s[i]。如果指定了长度-1,则在该维度中不进行填充。默认值:s = [input.size(d) for d in dim]

  • dim(元组[int],可选的) -要转换的维度。默认值:最后两个维度。

  • norm(str,可选的) -

    标准化模式。对于后向变换(ifft2()),这些对应于:

    • "forward" - 没有标准化

    • "backward" - 通过 1/n 标准化

    • "ortho" - 通过1/sqrt(n) 标准化(使IFFT正交化)

    其中n = prod(s) 是逻辑 IFFT 大小。使用相同的归一化模式调用正向变换 ( fft2() ) 将在两个变换之间应用 1/n 的整体归一化。这是使 ifft2() 精确反转所必需的。

    默认值为 "backward" (由 1/n 标准化)。

关键字参数

out(Tensor,可选的) -输出张量。

计算 input 的二维离散傅里叶逆变换。等效于 ifftn() 但默认情况下仅对最后两个维度进行 IFFT。

示例

>>> x = torch.rand(10, 10, dtype=torch.complex64)
>>> ifft2 = torch.fft.ifft2(x)

离散傅里叶变换是可分离的,因此这里的ifft2()相当于两个一维的 ifft() 调用:

>>> two_iffts = torch.fft.ifft(torch.fft.ifft(x, dim=0), dim=1)
>>> torch.testing.assert_close(ifft2, two_iffts, check_stride=False)

相关用法


注:本文由纯净天空筛选整理自pytorch.org大神的英文原创作品 torch.fft.ifft2。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。