本文整理汇总了Python中state.State.updateState方法的典型用法代码示例。如果您正苦于以下问题:Python State.updateState方法的具体用法?Python State.updateState怎么用?Python State.updateState使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类state.State
的用法示例。
在下文中一共展示了State.updateState方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_stop
# 需要导入模块: from state import State [as 别名]
# 或者: from state.State import updateState [as 别名]
def test_stop(self):
'''
Test the stop method
'''
pathSeg = PathSegmentMsg()
pathSeg.seg_type = pathSeg.LINE
pathSeg.seg_number = 1
pathSeg.seg_length = math.sqrt(2)*2
pathSeg.ref_point.x = 0.0
pathSeg.ref_point.y = 0.0
pathSeg.ref_point.z = 0.0
init_quat = quaternion_from_euler(0,0,math.pi/4.0)
pathSeg.init_tan_angle.w = init_quat[3]
pathSeg.init_tan_angle.x = init_quat[0]
pathSeg.init_tan_angle.y = init_quat[1]
pathSeg.init_tan_angle.z = init_quat[2]
pathSeg.curvature = 0.0
maxSpeed = TwistMsg()
maxSpeed.linear.x = 1.0
maxSpeed.angular.z = 1.0
pathSeg.max_speeds = maxSpeed
minSpeed = TwistMsg()
pathSeg.min_speeds = minSpeed
pathSeg.accel_limit = 1.0
pathSeg.decel_limit = -1.0
state = State(pathSeg)
vel_cmd = TwistMsg()
vel_cmd.linear.x = 0.5
vel_cmd.angular.z = 1.5
point = PointMsg()
maxIter = 300
count = 1
# extrapolate next point
while(state.segDistDone < 1.0 and maxIter > count):
# create where the robot should have moved
point.x = pathSeg.seg_length*(count/(maxIter/2.0))*math.cos(math.pi/4.0)
point.y = pathSeg.seg_length*(count/(maxIter/2.0))*math.sin(math.pi/4.0)
state.updateState(vel_cmd, point, 0.0)
count += 1
self.assertTrue(count < maxIter)
self.assertTrue(state.segDistDone >= 1.0)
self.assertEquals(state.v, 0.5)
self.assertEquals(state.o, 1.5)
state.stop()
self.assertEquals(state.v, 0.0)
self.assertEquals(state.o, 0.0)
示例2: test_updateState_NegOffsetNegArc
# 需要导入模块: from state import State [as 别名]
# 或者: from state.State import updateState [as 别名]
def test_updateState_NegOffsetNegArc(self):
'''
Test the robot following a path starting from the same angle
but with a negative offset and a smaller radius
'''
pathSeg = PathSegmentMsg()
pathSeg.seg_type = pathSeg.ARC
pathSeg.seg_number = 1
pathSeg.seg_length = math.pi/2.0
pathSeg.ref_point.x = 0.0
pathSeg.ref_point.y = 0.0
init_quat = quaternion_from_euler(0,0,3*math.pi/4.0-math.pi/2)
pathSeg.init_tan_angle.w = init_quat[3]
pathSeg.init_tan_angle.x = init_quat[0]
pathSeg.init_tan_angle.y = init_quat[1]
pathSeg.init_tan_angle.z = init_quat[2]
pathSeg.curvature = -1.0
maxSpeed = TwistMsg()
maxSpeed.linear.x = 1.0
maxSpeed.angular.z = 1.0
pathSeg.max_speeds = maxSpeed
minSpeed = TwistMsg()
pathSeg.min_speeds = minSpeed
pathSeg.accel_limit = 1.0
pathSeg.decel_limit = -1.0
state = State(pathSeg)
vel_cmd = TwistMsg()
vel_cmd.linear.x = 0.5
vel_cmd.angular.z = 0.0
point = PointMsg()
maxIter = 1000
count = 1
rhoDes = pathSeg.curvature + .3
angle = State.getYaw(pathSeg.init_tan_angle)
r=1/abs(rhoDes)
startAngle = angle + math.pi/2.0
# extrapolate next point
while(state.segDistDone < 1.0 and maxIter > count):
# create where the robot should have moved
dAng = pathSeg.seg_length*(count/(maxIter/2.0))*rhoDes
arcAng = startAngle+dAng
point.x = pathSeg.ref_point.x + r*math.cos(arcAng)
point.y = pathSeg.ref_point.y + r*math.sin(arcAng)
state.updateState(vel_cmd, point, 0.0)
count += 1
self.assertTrue(count < maxIter)
self.assertTrue(state.segDistDone >= 1.0)
示例3: test_updateState_NegOffsetNegSpin
# 需要导入模块: from state import State [as 别名]
# 或者: from state.State import updateState [as 别名]
def test_updateState_NegOffsetNegSpin(self):
'''
Test the robot following a path starting from an angle with
a positive offset
'''
pathSeg = PathSegmentMsg()
pathSeg.seg_type = pathSeg.SPIN_IN_PLACE
pathSeg.seg_number = 1
pathSeg.seg_length = math.pi
pathSeg.ref_point.x = 0.0
pathSeg.ref_point.y = 0.0
pathSeg.ref_point.z = 0.0
init_quat = quaternion_from_euler(0,0,0.0)
pathSeg.init_tan_angle.w = init_quat[3]
pathSeg.init_tan_angle.x = init_quat[0]
pathSeg.init_tan_angle.y = init_quat[1]
pathSeg.init_tan_angle.z = init_quat[2]
pathSeg.curvature = 1.0
ref_point = PointMsg()
ref_point.x = 1.0
ref_point.y = 1.0
pathSeg.ref_point = ref_point
maxSpeed = TwistMsg()
maxSpeed.linear.x = 1.0
maxSpeed.angular.z = 1.0
pathSeg.max_speeds = maxSpeed
minSpeed = TwistMsg()
pathSeg.min_speeds = minSpeed
pathSeg.accel_limit = 1.0
pathSeg.decel_limit = -1.0
state = State(pathSeg)
vel_cmd = TwistMsg()
vel_cmd.linear.x = 0.0
vel_cmd.angular.z = 0.5
point = PointMsg()
psi = 0.0
maxIter = 1000
count = 1
# extrapolate next point
while(state.segDistDone < 1.0 and maxIter > count):
# create where the robot should have moved
psi = 2.0*state.pathSeg.seg_length*count/maxIter + math.pi/4.0
state.updateState(vel_cmd, point, psi)
count += 1
self.assertTrue(count < maxIter)
self.assertTrue(state.segDistDone >= 1.0)
示例4: test_updateState_NegOffsetLine
# 需要导入模块: from state import State [as 别名]
# 或者: from state.State import updateState [as 别名]
def test_updateState_NegOffsetLine(self):
'''
Test the robot following a path starting with a negative
offset and crossing over the path
'''
pathSeg = PathSegmentMsg()
pathSeg.seg_type = pathSeg.LINE
pathSeg.seg_number = 1
pathSeg.seg_length = math.sqrt(2)*2
pathSeg.ref_point.x = 0.0
pathSeg.ref_point.y = 0.0
pathSeg.ref_point.z = 0.0
init_quat = quaternion_from_euler(0,0,math.pi/4.0)
pathSeg.init_tan_angle.w = init_quat[3]
pathSeg.init_tan_angle.x = init_quat[0]
pathSeg.init_tan_angle.y = init_quat[1]
pathSeg.init_tan_angle.z = init_quat[2]
pathSeg.curvature = 0.0
maxSpeed = TwistMsg()
maxSpeed.linear.x = 1.0
maxSpeed.angular.z = 1.0
pathSeg.max_speeds = maxSpeed
minSpeed = TwistMsg()
pathSeg.min_speeds = minSpeed
pathSeg.accel_limit = 1.0
pathSeg.decel_limit = -1.0
state = State(pathSeg)
vel_cmd = TwistMsg()
vel_cmd.linear.x = 0.5
vel_cmd.angular.z = 0.0
point = PointMsg()
actSegLength = 2.0*math.sqrt(2)+1.0
maxIter = 1000
count = 1
# extrapolate next point
while(state.segDistDone < 1.0 and maxIter > count):
# create where the robot should have moved
point.x = actSegLength*(count/(maxIter/2.0))*math.cos(3*math.pi/4.0) + 1.0
point.y = actSegLength*(count/(maxIter/2.0))*math.sin(3*math.pi/4.0)
state.updateState(vel_cmd, point, 0.0)
count += 1
self.assertTrue(count < maxIter)
self.assertTrue(state.segDistDone >= 1.0)
示例5: main
# 需要导入模块: from state import State [as 别名]
# 或者: from state.State import updateState [as 别名]
def main():
global naptime
global currSeg
rospy.init_node('velocity_profiler_alpha')
naptime = rospy.Rate(RATE) # this will be used globally by all functions that need to loop
desVelPub = rospy.Publisher('des_vel',TwistMsg) # Steering reads this and adds steering corrections on top of the desired velocities
segStatusPub = rospy.Publisher('seg_status', SegStatusMsg) # Lets the other nodes know what path segment the robot is currently executing
rospy.Subscriber("motors_enabled", BoolMsg, eStopCallback) # Lets velocity profiler know the E-stop is enabled
rospy.Subscriber("obstacles", ObstaclesMsg, obstaclesCallback) # Lets velocity profiler know where along the path there is an obstacle
rospy.Subscriber("cmd_vel", TwistMsg, velCmdCallback) #
rospy.Subscriber("path", PathListMsg, pathListCallback)
rospy.Subscriber("map_pos", PoseStampedMsg, poseCallback)
abortTime = None # will be set to the time an obstacle is detected
if rospy.has_param('waitTime'):
waitTime = rospy.Duration(rospy.get_param('waitTime'))
else:
waitTime = rospy.Duration(3.0)
print "Velocity Profiler entering main loop"
currSeg = State(dt=1/RATE)
while not rospy.is_shutdown():
# check where the robot is
last_vel = TwistMsg()
last_vel.linear.x = lastVCmd
last_vel.angular.z = lastWCmd
if(currSeg.pathSeg is not None):
currSeg.updateState(last_vel,position,State.getYaw(orientation))
# check if there are segments to execute
if(len(vTrajectory) != 0 or len(wTrajectory) != 0): # Note: Either both or neither should have 0 elements
# check for obstacles
if(obsWithinPathSeg()):
# set the timer if necessary
if(abortTime is None):
abortTime = rospy.Time.now()
else:
if(rospy.Time.now() - abortTime > waitTime):
# time to abort
abortTime = None # reset the time
# this method will reset anything
# that needs to be reset
# this may need to block here until the
# path list changes
abortPath()
# make sure the robot is stopped
desVelPub.publish(TwistMsg())
# publish the abort flag
publishSegStatus(segStatusPub,abort=False)
naptime.sleep()
continue
des_vel = stopForObs()
else:
abortTime = None # make sure that the abortTime gets reset
des_vel = getDesiredVelocity(vTrajectory[0],wTrajectory[0])
else:
des_vel = TwistMsg() # initialized to 0's by default
desVelPub.publish(des_vel) # publish either the scheduled commands or 0's
update() # remove completed segments and change currSeg's path segment when necessary
publishSegStatus(segStatusPub)
naptime.sleep()