当前位置: 首页>>代码示例>>Python>>正文


Python GaussianNB.score方法代码示例

本文整理汇总了Python中sklearn.naive_bayes.GaussianNB.score方法的典型用法代码示例。如果您正苦于以下问题:Python GaussianNB.score方法的具体用法?Python GaussianNB.score怎么用?Python GaussianNB.score使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.naive_bayes.GaussianNB的用法示例。


在下文中一共展示了GaussianNB.score方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_classification

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import score [as 别名]
def test_classification():
    t = zeros(len(target))
    t[target == 'setosa'] = 1
    t[target == 'versicolor'] = 2
    t[target == 'virginica'] = 3

    from sklearn.naive_bayes import GaussianNB
    classifier = GaussianNB()
    classifier.fit(data,t) # training on the iris dataset

    print classifier.predict(data[0])
    print t[0]


    from sklearn import cross_validation
    train, test, t_train, t_test = cross_validation.train_test_split(data, t, test_size=0.4, random_state=0)

    classifier.fit(train,t_train) # train
    print classifier.score(test,t_test) # test

    from sklearn.metrics import confusion_matrix
    print confusion_matrix(classifier.predict(test),t_test)

    from sklearn.metrics import classification_report
    print classification_report(classifier.predict(test), t_test, target_names=['setosa', 'versicolor', 'virginica'])

    from sklearn.cross_validation import cross_val_score
    # cross validation with 6 iterations 
    scores = cross_val_score(classifier, data, t, cv=6)
    print scores

    from numpy import mean
    print mean(scores)
开发者ID:wangwf,项目名称:Codes,代码行数:35,代码来源:dataMining.py

示例2: crossvalidate

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import score [as 别名]
def crossvalidate(X_trn, Y_trn):
    """Cross validation with comparison to classifiers that classify as only good or only bad"""
    import numpy as np
    X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(X_trn.toarray(), Y_trn, test_size=0.4, random_state=1)
    dumb_labels1 = Y_test.copy()
    dumb_labels2 = Y_test.copy()
    dumb_labels1[dumb_labels1 == 0] = 1;    #Labels all 1s
    dumb_labels2[dumb_labels2 == 1] = 0;    #Labels all 0s
    dumb_labels3 = np.random.randint(2, size=(len(Y_test),))
    clf = GaussianNB()
    #clf = Perceptron()
    #clf = SGDClassifier()
    #clf = MultinomialNB()
    #clf = KNeighborsClassifier()
    #clf = LinearSVC()
    clf.fit(X_train, Y_train)
    accuracy = clf.score(X_test, Y_test)
    dumb_clf1_score = clf.score(X_test, dumb_labels1)
    dumb_clf2_score = clf.score(X_test, dumb_labels2)
    dumb_clf3_score = clf.score(X_test, dumb_labels3)
    print "Classifier Score : ", accuracy
    print "Dumb_classifier with all 1s : ", dumb_clf1_score
    print "Dumb classifier with all 0s : ", dumb_clf2_score
    print "Dumb classifier with random sequence : ", dumb_clf3_score
    return accuracy
开发者ID:erprateek,项目名称:exercises,代码行数:27,代码来源:task3.py

示例3: get_GNB

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import score [as 别名]
def get_GNB(Xtrain, Xtest, Ytrain, Ytest):
    gnb = GaussianNB()
    gnb.fit(Xtrain,Ytrain)
    scores = np.empty((4))
    scores[0] = gnb.score(Xtrain,Ytrain)
    scores[1] = gnb.score(Xtest,Ytest)
    print('GNB, train: {0:.02f}% '.format(scores[0]*100))
    print('GNB, test: {0:.02f}% '.format(scores[1]*100))
    return gnb
开发者ID:manuwhs,项目名称:Trapyng,代码行数:11,代码来源:system_modules.py

示例4: get_GNB

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import score [as 别名]
def get_GNB(Xtrain, Ytrain, Xtest = None , Ytest = None, verbose = 0):
    gnb = GaussianNB()
    gnb.fit(Xtrain,Ytrain)
    
    if (verbose == 1):
        scores = np.empty((2))
        scores[0] = gnb.score(Xtrain,Ytrain)
        print('GNB, train: {0:.02f}% '.format(scores[0]*100))
        if (type(Xtest) != type(None)):
            scores[1] = gnb.score(Xtest,Ytest)
            print('GNB, test: {0:.02f}% '.format(scores[1]*100))
    return gnb
开发者ID:manuwhs,项目名称:Trapyng,代码行数:14,代码来源:baseClassifiersLib.py

示例5: cvalidate

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import score [as 别名]
def cvalidate():
    from sklearn import cross_validation
    targetset = np.genfromtxt(open('trainLabels.csv','r'), dtype='f16')
    y = [x for x in targetset]

    trainset = np.genfromtxt(open('train.csv','r'), delimiter=',', dtype='f16')
    X = np.array([x for x in trainset])
    
    X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size = 0.3, random_state = 0)

    gnb = GaussianNB()
    X_train, X_test = decomposition_pca(X_train, X_test)
    gnb.fit(X_train, y_train)

    print gnb.score(X_test, y_test)
开发者ID:kingr13,项目名称:entire-src,代码行数:17,代码来源:nbayes.py

示例6: GaussianNBcls

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import score [as 别名]
class GaussianNBcls(object):
    """docstring for ClassName"""
    def __init__(self):
        self.gnb_cls = GaussianNB()
        self.prediction = None
        self.train_x = None
        self.train_y = None

    def train_model(self, train_x, train_y):
        try:
            self.train_x = train_x
            self.train_y = train_y
            self.gnb_cls.fit(train_x, train_y)
        except:
            print(traceback.format_exc())

    def predict(self, test_x):
        try:
            self.test_x = test_x
            self.prediction = self.gnb_cls.predict(test_x)
            return self.prediction
        except:
            print(traceback.format_exc())

    def accuracy_score(self, test_y):
        try:
            # return r2_score(test_y, self.prediction)
            return self.gnb_cls.score(self.test_x, test_y)
        except:
            print(traceback.format_exc())
开发者ID:obaid22192,项目名称:machine-learning,代码行数:32,代码来源:classifiers.py

示例7: PriceModel

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import score [as 别名]
class PriceModel(object):
    """Linear Regression Model used to predict future prices"""
    def __init__(self, algorithm='gnb'):
        self.algorithm = algorithm

        if algorithm == 'svm':
            self.clf = SVC(kernel='rbf')
        elif algorithm == 'rf':
            self.clf = RandomForestClassifier(n_estimators=10,
                                                max_depth=None,
                                                min_samples_split=1,
                                                random_state=0)
        elif algorithm == 'lr':
            self.clf = LogisticRegression()
        elif algorithm == 'knn':
            self.clf = KNeighborsClassifier(n_neighbors=3)
        else:
            # Naive Bayes
            self.clf = GaussianNB()

    def train(self, X_train, y_train):
        self.clf.fit(X_train, y_train)

    def predict(self, x):
        return self.clf.predict(x)

    def score(self, X_test, y_test):
        return self.clf.score(X_test, y_test)
开发者ID:adityasiwan,项目名称:MachineLearning-stock-prices,代码行数:30,代码来源:models.py

示例8: trainData

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import score [as 别名]
def trainData(username):
	"""
	Trains the data based on the users performance so far
	Returns a trained Gaussian Naive Bayes model and updates result collection
	"""
	X = getFeatures(username)
	Y = getClassList(username)
	
	trainX = np.array(X)
	trainY = np.array(Y)

	gnb = GaussianNB()
	gnb.fit(trainX, trainY)
	print "Score with Naive Bayes: ", gnb.score(trainX, trainY)

	testData = words.posts.find({}, {'id' : 1,
									'points' : 1,
									'diff' : 1,
									'_id' : 0})
	testData = map(lambda x : (x['id'], x['points'], x['diff']), testData)

	with warnings.catch_warnings():
		warnings.simplefilter('ignore')
		for data in testData:
			testWord = words.posts.find_one({'id' : data[0]}, {'word' : 1, '_id' : 0})['word']
			wordClass = setWordClass(list(gnb.predict_proba(data))[0])
			classWord = result.posts.update({'username' : username}, {'$set' : {testWord : wordClass}}, upsert = True)
开发者ID:prathameshnetake,项目名称:BE_Project,代码行数:29,代码来源:NaiveBayes.py

示例9: NB

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import score [as 别名]
def NB(text):
    ### features_train and features_test are the features for the training
    ### and testing datasets, respectively
    ### labels_train and labels_test are the corresponding item labels
    features_train, features_test, labels_train, labels_test = Preprocess()
    Ifeatures_train,Ifeatures_test,Ilabels_train=preprocess_input([text])

    # classification goes here

    clf = GaussianNB()

    # training
    train_t0 = time()
    clf.fit(features_train, labels_train)
    train_t1 = time()

    # prediction or testing
    test_t0 = time()
    predict = clf.predict(features_test)
    test_t1 = time()

    print "accuracy: ", clf.score(features_test, labels_test)
    print "#################################"
    print "tain time: ", round(train_t1 - train_t0, 3), "s"
    print "prediction time: ", round(test_t1 - test_t0, 3), "s"

    print "#################################"

    clf.fit(Ifeatures_train,Ilabels_train)
    print ("prediction of ",str(clf.predict(Ifeatures_test))[1])

    #print "prediction of ", clf.predict(preprocess_input(text))
    return  str(clf.predict(Ifeatures_test))[1]
开发者ID:mohamed-taha,项目名称:sherlok-tools,代码行数:35,代码来源:naive_bayes.py

示例10: NBAccuracy

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import score [as 别名]
def NBAccuracy(features_train, labels_train, features_test, labels_test):
    """ compute the accuracy of your Naive Bayes classifier """
    ### import the sklearn module for GaussianNB
    from sklearn.naive_bayes import GaussianNB

    ### create classifier
    clf = GaussianNB()

    t0 = time()
    ### fit the classifier on the training features and labels
    clf.fit(features_train, labels_train)
    print "training time:", round(time()-t0, 3), "s"

    ### use the trained classifier to predict labels for the test features
    import numpy as np
    t1 = time()
    pred = clf.predict(features_test)
    print "predicting time:", round(time()-t1, 3), "s"

    ### calculate and return the accuracy on the test data
    ### this is slightly different than the example,
    ### where we just print the accuracy
    ### you might need to import an sklearn module
    accuracy = clf.score(features_test, labels_test)
    return accuracy
开发者ID:dixu-ca,项目名称:ud120-projects,代码行数:27,代码来源:nb_author_id.py

示例11: NBAccuracy

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import score [as 别名]
def NBAccuracy(features_train, labels_train, features_test, labels_test):
    """ compute the accuracy of your Naive Bayes classifier """
    ### import the sklearn module for GaussianNB
    from sklearn.naive_bayes import GaussianNB

    ### create classifier
    clf = GaussianNB()

    ### fit the classifier on the training features and labels
    clf.fit(features_train, labels_train)

    ### use the trained classifier to predict labels for the test features
    pred = clf.predict(features_test)


    ### calculate and return the accuracy on the test data
    ### this is slightly different than the example, 
    ### where we just print the accuracy
    ### you might need to import an sklearn module
    
    #from sklearn.metrics import accuracy_score
    #accuarcy = accuracy_score(pred, labels_test)
    
    accuracy = clf.score(features_test, labels_test)
    return accuracy
开发者ID:stefanbuenten,项目名称:nanodegree,代码行数:27,代码来源:nb_quiz.py

示例12: gaussian_bayes_test

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import score [as 别名]
 def gaussian_bayes_test(self):
     print 'gaussian bayes test'
     g_bayes_clf = GaussianNB()
     print 'cross validation score',cross_val_score(g_bayes_clf, self.x_data, self.y_data)
     start_time = time.time()
     g_bayes_clf.fit(self.x_train, self.y_train)
     print 'score',g_bayes_clf.score(self.x_test, self.y_test)
     print 'time cost', time.time() - start_time
开发者ID:AloneGu,项目名称:ml_algo_box,代码行数:10,代码来源:classifier_benchmark.py

示例13: classify

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import score [as 别名]
def classify(features_train, labels_train, features_test, labels_test):
  classifier = GaussianNB()
  t0 = time()
  classifier.fit(features_train, labels_train)
  print "training time: ", round(time() - t0), "s"
  t1 = time()
  classifier.predict(features_test)
  print "predicting time: ", round(time() - t1), "s"
  return classifier.score(features_test, labels_test)
开发者ID:linhbui,项目名称:naive-bayes,代码行数:11,代码来源:email_author_identification.py

示例14: naiveBayesClassifierTraining

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import score [as 别名]
def naiveBayesClassifierTraining(compounds_all):
    print "Building naive Bayes classifier (" + str(NB_FOLDS) + "-fold cross-validation)..."
    # get the data
    keys = compounds_all.keys()
    fingerprint_data = [compounds_all[cmpnd_id]['fingerprint'] for cmpnd_id in keys]
    fingerprint_data = numpy.asarray(fingerprint_data)
    activity_data = [compounds_all[cmpnd_id]['active'] for cmpnd_id in keys]
    activity_data = numpy.asarray(activity_data)

    # perform K-fold cross-validation
    classifier = GaussianNB()
    kfold_xv_strat = cross_validation.StratifiedKFold(activity_data, NB_FOLDS, indices=False)
    confusion_matrices = []
    probabilities = []
    scores = []
    models = []
    true_activities = []
    aucs = []
    for train, test in kfold_xv_strat:
        fingerprint_data_train = fingerprint_data[train]
        fingerprint_data_test = fingerprint_data[test]
        activity_data_train = activity_data[train]
        activity_data_test = activity_data[test]

        # model building
        classifier.fit(fingerprint_data_train, activity_data_train)

        # testing
        activity_data_predictions = classifier.predict(fingerprint_data_test)
        models.append(classifier)

        probability_estimates = classifier.predict_proba(fingerprint_data_test)
        probabilities.append(probability_estimates)

        scores.append(classifier.score(fingerprint_data_test, activity_data_test))

        activity_confusion_matrix = confusion_matrix(activity_data_test, activity_data_predictions)
        confusion_matrices.append(activity_confusion_matrix)

        true_activities.append(activity_data_test)

        # ROC curves
        fpr, tpr, thresholds = roc_curve(activity_data_test, probability_estimates[:, 1])
        aucs.append(auc(fpr, tpr))
    classifier.fit(fingerprint_data, activity_data)
    print "Done."
    return {
        'confusion_matrices' : confusion_matrices
        , 'probabilities' : probabilities
        , 'scores' : scores
        , 'models' : models
        , 'true_activity_data' : true_activities
        , 'AUCs' : aucs
        , 'fingerprint_data' : fingerprint_data
        , 'activity_data' : activity_data
        , 'final_model' : classifier
    }
开发者ID:martin-sicho,项目名称:data_mining_2014,代码行数:59,代码来源:classification.py

示例15: run_test

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import score [as 别名]
def run_test(trainData, trainLabels, testData, testLabels):
  start_time = time()
  classifier = GaussianNB()
  classifier.fit(trainData, trainLabels)
  score = classifier.score(testData, testLabels)
  duration = time() - start_time
  print "training set size: " + str(len(trainData))
  print "score: " + str(score)
  print "time: " + str(duration) + "\n"
开发者ID:rszeto,项目名称:image-rec-383,代码行数:11,代码来源:NB_test.py


注:本文中的sklearn.naive_bayes.GaussianNB.score方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。