当前位置: 首页>>代码示例>>Python>>正文


Python GaussianNB.predict方法代码示例

本文整理汇总了Python中sklearn.naive_bayes.GaussianNB.predict方法的典型用法代码示例。如果您正苦于以下问题:Python GaussianNB.predict方法的具体用法?Python GaussianNB.predict怎么用?Python GaussianNB.predict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.naive_bayes.GaussianNB的用法示例。


在下文中一共展示了GaussianNB.predict方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict [as 别名]
def main():
	config = dict()
	config['resource_dir'] = os.path.abspath(os.path.join(os.path.realpath(__file__), '../../')) + "/resources/"
	config['raw_file'] = config['resource_dir'] + "ideal_weight.csv"
	ideal_weight_df = None

	ideal_weight_df = pd.read_csv(config['raw_file'])
	ideal_weight_df.columns = [x.replace("\'","") for x in ideal_weight_df.columns.values.tolist()]
	
	ideal_weight_df.loc[:,'sex'] = ideal_weight_df['sex'].map(lambda x: x.replace("\'",""))
	#print ideal_weight_df
	#print config

	plt.hist(ideal_weight_df['actual'], alpha=0.5, label='actual')
	plt.hist(ideal_weight_df['ideal'], alpha=0.5, label='ideal')
	plt.show() # figure_1.png

	ideal_weight_df['diff'].hist()

	ideal_weight_df['sex_id'] = ideal_weight_df['sex'].map(lambda x: 1 if x == 'Male' else 0)

	clf = GaussianNB()
	clf.fit(ideal_weight_df[['actual','ideal','diff']],ideal_weight_df['sex'])

	print clf.predict([[145,160,-15]]) # male

	print clf.predict([[160,145,15]]) # female
开发者ID:webmusing,项目名称:thinkful,代码行数:29,代码来源:naive_bayes.py

示例2: test_classification

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict [as 别名]
def test_classification():
    t = zeros(len(target))
    t[target == 'setosa'] = 1
    t[target == 'versicolor'] = 2
    t[target == 'virginica'] = 3

    from sklearn.naive_bayes import GaussianNB
    classifier = GaussianNB()
    classifier.fit(data,t) # training on the iris dataset

    print classifier.predict(data[0])
    print t[0]


    from sklearn import cross_validation
    train, test, t_train, t_test = cross_validation.train_test_split(data, t, test_size=0.4, random_state=0)

    classifier.fit(train,t_train) # train
    print classifier.score(test,t_test) # test

    from sklearn.metrics import confusion_matrix
    print confusion_matrix(classifier.predict(test),t_test)

    from sklearn.metrics import classification_report
    print classification_report(classifier.predict(test), t_test, target_names=['setosa', 'versicolor', 'virginica'])

    from sklearn.cross_validation import cross_val_score
    # cross validation with 6 iterations 
    scores = cross_val_score(classifier, data, t, cv=6)
    print scores

    from numpy import mean
    print mean(scores)
开发者ID:wangwf,项目名称:Codes,代码行数:35,代码来源:dataMining.py

示例3: GaussianNBLearner

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict [as 别名]
class GaussianNBLearner(AbstractLearner):
    """
    Gaussian Naive Bayes Learner

    http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html

    We need to use X.toarray() because those functions expect dense arrays.
    """

    def __init__(self):
        self.nb = GaussianNB()

    def train(self, X, Y):
        if hasattr(X, 'toarray'):
            self.nb.fit(X.toarray(), Y)
        else:
            self.nb.fit(X, Y)

    def predict(self, X):
        if (hasattr(X, "toarray")):
            return self.nb.predict(X.toarray())
        else:
            return self.nb.predict(X)

    def score(self, X, Y):
        return np.mean(np.abs(self.nb.predict(X) - np.array(Y)))
开发者ID:2dpodcast,项目名称:cs109-project-1,代码行数:28,代码来源:learners.py

示例4: __init__

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict [as 别名]
class GaussianNBClassifier:

	def __init__(self):
		"""
		This is the constructor responsible for initializing the classifier
		"""
		self.outputHeader = "#gnb"
		self.clf = None

	def buildModel(self):
		"""
		This builds the model of the Gaussian NB classifier
		"""
		self.clf =  GaussianNB()

	def trainGaussianNB(self,X, Y):
		"""
		Training the Gaussian NB Classifier
		"""
		self.clf.fit(X, Y)

	def validateGaussianNB(self,X, Y):
		"""
		Validate the Gaussian NB Classifier
		"""
		YPred = self.clf.predict(X)
		print accuracy_score(Y, YPred)

	def testGaussianNB(self,X, Y):
		"""
		Test the Gaussian NB Classifier
		"""
		YPred = self.clf.predict(X)
		print accuracy_score(Y, YPred)
开发者ID:USCDataScience,项目名称:NN-fileTypeDetection,代码行数:36,代码来源:gaussianNB.py

示例5: MyNaiveBayes

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict [as 别名]
 def MyNaiveBayes(object):
     pre = PreProcess()
     (training_value, test_value, test_pos_x, test_pos_y, training_pos_x, training_pos_y) = pre.split()
     # 模型初始化
     clf_x = GaussianNB()
     clf_y = GaussianNB()
     # 进行模型的训练
     clf_x.fit(training_value, training_pos_x)
     clf_y.fit(training_value, training_pos_y)
     # 计算结果
     result_pos_x = clf_x.predict(test_value)
     result_pos_y = clf_y.predict(test_value)
     '''
     print result_pos_x
     print test_pos_x
     print result_pos_y
     print test_pos_y
     '''
     # 计算误差
     x_dis = []
     y_dis = []
     d_dis = []
     for i in range(len(result_pos_x)):
         x_dis.append(abs(result_pos_x[i] - test_pos_x[i]))
         y_dis.append(abs(result_pos_y[i] - test_pos_y[i]))
         d_dis.append(math.sqrt((result_pos_x[i]-test_pos_x[i])**2+(result_pos_y[i]-test_pos_y[i])**2))
     x = (sum(x_dis))/len(result_pos_x)
     y = (sum(y_dis))/len(result_pos_y)
     d = (sum(d_dis))/len(d_dis)
     print x, y, d
     return x, y, d
开发者ID:wdldgithub,项目名称:gbServer,代码行数:33,代码来源:location.py

示例6: NB

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict [as 别名]
def NB(text):
    ### features_train and features_test are the features for the training
    ### and testing datasets, respectively
    ### labels_train and labels_test are the corresponding item labels
    features_train, features_test, labels_train, labels_test = Preprocess()
    Ifeatures_train,Ifeatures_test,Ilabels_train=preprocess_input([text])

    # classification goes here

    clf = GaussianNB()

    # training
    train_t0 = time()
    clf.fit(features_train, labels_train)
    train_t1 = time()

    # prediction or testing
    test_t0 = time()
    predict = clf.predict(features_test)
    test_t1 = time()

    print "accuracy: ", clf.score(features_test, labels_test)
    print "#################################"
    print "tain time: ", round(train_t1 - train_t0, 3), "s"
    print "prediction time: ", round(test_t1 - test_t0, 3), "s"

    print "#################################"

    clf.fit(Ifeatures_train,Ilabels_train)
    print ("prediction of ",str(clf.predict(Ifeatures_test))[1])

    #print "prediction of ", clf.predict(preprocess_input(text))
    return  str(clf.predict(Ifeatures_test))[1]
开发者ID:mohamed-taha,项目名称:sherlok-tools,代码行数:35,代码来源:naive_bayes.py

示例7: NBMatcher

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict [as 别名]
class NBMatcher(MLMatcher):
    def __init__(self, *args, **kwargs):
        super(NBMatcher, self).__init__(*args, **kwargs)
        self.clf = GaussianNB(*args, **kwargs)
    def fit(self, X, Y):
        self.clf.fit(X, Y)
    def predict(self, X):
        self.clf.predict(X)
开发者ID:kvpradap,项目名称:magellan_scratch_1,代码行数:10,代码来源:nbmatcher.py

示例8: naive_bayes

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict [as 别名]
def naive_bayes(train_features, train_labels, test_features, test_labels):
    # Train SVM classifier
    model = GaussianNB()
    model.fit(train_features, train_labels)
    test_results = model.predict(test_features)
    train_results = model.predict(train_features)

    return (test_results, train_results)
开发者ID:bhnascar,项目名称:Viral-Art,代码行数:10,代码来源:classifier.py

示例9: classify

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict [as 别名]
def classify(features_train, labels_train, features_test, labels_test):
  classifier = GaussianNB()
  t0 = time()
  classifier.fit(features_train, labels_train)
  print "training time: ", round(time() - t0), "s"
  t1 = time()
  classifier.predict(features_test)
  print "predicting time: ", round(time() - t1), "s"
  return classifier.score(features_test, labels_test)
开发者ID:linhbui,项目名称:naive-bayes,代码行数:11,代码来源:email_author_identification.py

示例10: bayes_test

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict [as 别名]
def bayes_test():
    X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
    Y = np.array([1, 1, 1, 2, 2, 2])
    clf = GaussianNB()
    clf.fit(X, Y)
    print(clf.predict([[-0.8, -1]]))
    clf_pf = GaussianNB()
    clf_pf.partial_fit(X, Y, np.unique(Y))
    print(clf_pf.predict([[-0.8, -1]]))
开发者ID:texpine,项目名称:ud120-projects,代码行数:11,代码来源:explore_enron_data.py

示例11: TreeClassifier

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict [as 别名]
class TreeClassifier(Classifier):

    def __init__(self):
        self.classifier = GaussianNB()

    def do_train(self, X, y):
        self.classifier.fit(X, y)

    def do_classification(self, X, y):
        self.classifier.predict(X, y)
开发者ID:rchibana,项目名称:heartDiseaseIA,代码行数:12,代码来源:bayes.py

示例12: __init__

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict [as 别名]
class NaiveBayes:
    __theta = 0
    __sigma = 0

    def __init__(self):
        pass 
        #self.__new_data = 0

    def learning(self,x_data,y_data):
        self.rssi = np.loadtxt(x_data, delimiter=',')
        print(self.rssi)

        self.position = np.loadtxt(y_data, delimiter=',')
        print(self.position)

        self.gaussian_nb = GaussianNB()

        from sklearn.cross_validation import train_test_split
        rssi_train, rssi_test, position_train, position_test = train_test_split(self.rssi, self.position, random_state=0)

        self.gaussian_nb.fit(rssi_train,position_train)
        print("theta",self.gaussian_nb.theta_)
        print("sigma",self.gaussian_nb.sigma_)

        predicted = self.gaussian_nb.predict(rssi_test)

        print(metrics.accuracy_score(position_test, predicted))
    '''
    def set_params(self,theta,sigma):
        __theta = theta
        __sigma = sigma
        print __theta
        print __sigma
        '''

    def inference(self,r_data):
        self.predicted_class = self.gaussian_nb.predict(r_data)

        post_prob = self.gaussian_nb.predict_proba(r_data)
        log_prob = self.gaussian_nb.predict_log_proba(r_data)
        self.post_prob_float16 = post_prob.astype(np.float16)
        #E = 1*self.post_prob_float16[0][0]+2*self.post_prob_float16[0][1]+3*self.post_prob_float16[0][2]
        #var = (1*self.post_prob_float16[0][0]+4*self.post_prob_float16[0][1]+9*self.post_prob_float16[0][2])-E**2
        #print(self.post_prob_float16)
        #print(self.post_prob_float16[0])
        #print(var)
        print(self.predicted_class)
        #print(self.gaussian_nb.class_prior_)
        #print(log_prob)

        return self.predicted_class

    def output(self):
        output = graph.Graph()
        output.bar_graph(self.post_prob_float16[0])
开发者ID:KawachiShota,项目名称:position_estimation,代码行数:57,代码来源:inference.py

示例13: predict_author

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict [as 别名]
def predict_author(arr, yazar_features, yazar_classes):
    results = []

    print "\n[DEBUG] K-NN result (neighbors: 10)"
    knn = KNeighborsClassifier(n_neighbors=10)
    knn.fit(yazar_features, yazar_classes)
    print knn.predict(arr)
    results.append(knn.predict(arr)[0])

    print "\n[DEBUG] SVC result (linear) (degree=3)"
    svc = svm.SVC(kernel='linear', degree=3)
    svc.fit(yazar_features, yazar_classes)
    print svc.predict(arr)
    results.append(svc.predict(arr)[0])

    print "\n[DEBUG] Logistic Regression result ()"
    regr = linear_model.LogisticRegression()
    regr.fit(yazar_features, yazar_classes)
    print regr.predict(arr)
    results.append(regr.predict(arr)[0])

    print "\n[DEBUG] Gaussian Naive Bayes"
    gnb = GaussianNB()
    gnb.fit(yazar_features, yazar_classes)
    print gnb.predict(arr)
    results.append(gnb.predict(arr)[0])

    print "\n[DEBUG] Decision Tree Classifier"
    dtc = tree.DecisionTreeClassifier()
    dtc.fit(yazar_features, yazar_classes)
    print dtc.predict(arr)
    results.append(dtc.predict(arr)[0])

    print "\n[DEBUG] Gradient Boosting Classification"
    gbc = GradientBoostingClassifier()
    gbc.fit(yazar_features, yazar_classes)
    print gbc.predict(arr)
    results.append(gbc.predict(arr)[0])

    # output = open('features.pkl', 'wb')
    # pickle.dump(yazar_features, output)
    # output.close()

    # output = open('classes.pkl', 'wb')
    # pickle.dump(yazar_classes, output)
    # output.close()

    # test_yazar_features = []        # for test data
    # test_yazar_classes = []         # for test classes
    # # yazar_features = []             # for train data
    # # yazar_classes = []              # for train classes

    return results
开发者ID:Searil,项目名称:kimyazmis,代码行数:55,代码来源:predictor.py

示例14: trainer

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict [as 别名]
def trainer(dataset = "Features.csv"):
    # Train the various machine learning algorithms using the features extracted.
    data, labels = extractor(dataset)
    train, test, train_labels, test_labels = train_test_split(data, labels, test_size = 0.20, random_state = 42)
    names, expected_results = zip(*test_labels)
    names1, train_labels = zip(*train_labels)
    
    print 'S' + '\t' + 'H' + '\t' + 'F' + '\t' + 'A' + '\t' + 'N'
    
    # Random Forest Classifier
    rf = RandomForestClassifier(n_estimators = 100, n_jobs = 2)
    rf.fit(train, train_labels)
    results_boosting = rf.predict(test)
    conf_matrix = confusion_matrix(expected_results, results_boosting)
    print "Forset Classifier:\n"
    print conf_matrix
    accuracy_Boosting = float(np.trace(conf_matrix))/float(np.sum(conf_matrix))
    print accuracy_Boosting

    # KNN Classifier
    neigh = KNeighborsClassifier(n_neighbors=3)
    neigh.fit(train, train_labels)
    results_KNN = neigh.predict(test)
    conf_matrix = confusion_matrix(expected_results, results_KNN)
    print "KNN Classifier:\n"
    print conf_matrix
    accuracy_KNN = float(np.trace(conf_matrix))/float(np.sum(conf_matrix))
    print accuracy_KNN

    # Baye's Classifier
    clf = GaussianNB()
    clf.fit(train, train_labels)
    results_Bayes = clf.predict(test)
    conf_matrix = confusion_matrix(expected_results, results_Bayes)
    print "\nBayes Classifier:\n"
    print conf_matrix
    accuracy_Bayes = float(np.trace(conf_matrix))/float(np.sum(conf_matrix))
    print accuracy_Bayes

    # Neural Network
    clf = BernoulliNB()
    clf.fit(train, train_labels)
    results_NN = clf.predict(test)
    conf_matrix = confusion_matrix(expected_results, results_NN)
    print "\nNeural Network:\n"
    print conf_matrix
    accuracy_NN = float(np.trace(conf_matrix))/float(np.sum(conf_matrix))
    print accuracy_NN

    documenter(names, results_boosting, results_Bayes, results_NN, results_KNN, accuracy_Boosting, accuracy_Bayes, accuracy_NN, accuracy_KNN)
开发者ID:ChetanVashisht,项目名称:Sentiment-Analysis,代码行数:52,代码来源:Classifier.py

示例15: NBAccuracy

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict [as 别名]
def NBAccuracy(features_train, labels_train, features_test, labels_test):
    """ compute the accuracy of your Naive Bayes classifier """
    ### import the sklearn module for GaussianNB
    from sklearn.naive_bayes import GaussianNB

    ### create classifier
    clf = GaussianNB()

    t0 = time()
    ### fit the classifier on the training features and labels
    clf.fit(features_train, labels_train)
    print "training time:", round(time()-t0, 3), "s"

    ### use the trained classifier to predict labels for the test features
    import numpy as np
    t1 = time()
    pred = clf.predict(features_test)
    print "predicting time:", round(time()-t1, 3), "s"

    ### calculate and return the accuracy on the test data
    ### this is slightly different than the example,
    ### where we just print the accuracy
    ### you might need to import an sklearn module
    accuracy = clf.score(features_test, labels_test)
    return accuracy
开发者ID:dixu-ca,项目名称:ud120-projects,代码行数:27,代码来源:nb_author_id.py


注:本文中的sklearn.naive_bayes.GaussianNB.predict方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。