当前位置: 首页>>代码示例>>Python>>正文


Python GaussianNB.predict_proba方法代码示例

本文整理汇总了Python中sklearn.naive_bayes.GaussianNB.predict_proba方法的典型用法代码示例。如果您正苦于以下问题:Python GaussianNB.predict_proba方法的具体用法?Python GaussianNB.predict_proba怎么用?Python GaussianNB.predict_proba使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.naive_bayes.GaussianNB的用法示例。


在下文中一共展示了GaussianNB.predict_proba方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_gnb_priors

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict_proba [as 别名]
def test_gnb_priors():
    """Test whether the class prior override is properly used"""
    clf = GaussianNB(priors=np.array([0.3, 0.7])).fit(X, y)
    assert_array_almost_equal(clf.predict_proba([[-0.1, -0.1]]),
                              np.array([[0.825303662161683,
                                         0.174696337838317]]), 8)
    assert_array_equal(clf.class_prior_, np.array([0.3, 0.7]))
开发者ID:Lavanya-Basavaraju,项目名称:scikit-learn,代码行数:9,代码来源:test_naive_bayes.py

示例2: GNB

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict_proba [as 别名]
class GNB(object):
	def __init__(self):
		self.gnb = GaussianNB()
	def predict(self, X):
		return self.gnb.predict_proba(X)[:,1][:,np.newaxis]
	def fit(self, X, y):
		self.gnb.fit(X,y)
开发者ID:MLevinson-OR,项目名称:GBx-testbed,代码行数:9,代码来源:base_estimators.py

示例3: performNB

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict_proba [as 别名]
def performNB(trainingScores, trainingResults, testScores):
	print "->Gaussian NB"
	X = []
	for currMark in trainingScores:
		pass
	for idx in range(0, len(trainingScores[currMark])):
		X.append([])

	for currMark in trainingScores:
		if "Asym" in currMark:
			continue
		print currMark, 
		for idx in range(0, len(trainingScores[currMark])):
			X[idx].append(trainingScores[currMark][idx])

	X_test = []
	for idx in range(0, len(testScores[currMark])):
		X_test.append([])

	for currMark in trainingScores:
		if "Asym" in currMark:
			continue
		for idx in range(0, len(testScores[currMark])):
			X_test[idx].append(testScores[currMark][idx])
	gnb = GaussianNB()
	gnb.fit(X, np.array(trainingResults))
	y_pred = gnb.predict_proba(X_test)[:, 1]
	print "->Gaussian NB"
	return y_pred
开发者ID:gersteinlab,项目名称:MatchedFilter,代码行数:31,代码来源:validationDifferentCelltypeModel.py

示例4: gnbmodel

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict_proba [as 别名]
def gnbmodel(d,X_2,y_2,X_3,y_3,X_test,y_test):
    X_3_copy = X_3.copy(deep=True)
    X_3_copy['chance']=0
    index = 0    
    
########## k折交叉验证 ###########################
    scores = cross_val_score(GaussianNB(), X_2, y_2, cv=5, scoring='accuracy')
    score_mean =scores.mean()
    print(d+'5折交互检验:'+str(score_mean))
#################################################
    
    gnb = GaussianNB().fit(X_2,y_2)

################ 预测测试集 ################   
    answer_gnb = gnb.predict(X_test)
    accuracy = metrics.accuracy_score(y_test,answer_gnb)
    print(d+'预测:'+str(accuracy))
###############################################
    
    chance = gnb.predict_proba(X_3)[:,1]
    for c in chance:
        X_3_copy.iloc[index,len(X_3_copy.columns)-1]=c
        index += 1
    chance_que = X_3_copy.iloc[:,len(X_3_copy.columns)-1]
    return chance_que
开发者ID:IamCatkin,项目名称:Learning-Python,代码行数:27,代码来源:SSL-8.py

示例5: GaussianColorClassifier

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict_proba [as 别名]
class GaussianColorClassifier(ContourClassifier):
    '''
    A contour classifier which classifies a contour
    based on it's mean color in BGR, HSV, and LAB colorspaces,
    using a Gaussian classifier for these features.

    For more usage info, see class ContourClassifier
    '''
    FEATURES = ['B', 'G', 'R', 'H', 'S', 'V', 'L', 'A', 'B']

    def __init__(self, classes, **kwargs):
        super(GaussianColorClassifier, self).__init__(classes, **kwargs)
        self.classifier = GaussianNB()

    def get_features(self, img, mask):
        mean = cv2.mean(img, mask)
        mean = np.array([[mean[:3]]], dtype=np.uint8)
        mean_hsv = cv2.cvtColor(mean, cv2.COLOR_BGR2HSV)
        mean_lab = cv2.cvtColor(mean, cv2.COLOR_BGR2LAB)
        features = np.hstack((mean.flatten(), mean_hsv.flatten(), mean_lab.flatten()))
        return features

    def classify_features(self, features):
        return self.classifier.predict(features)

    def feature_probabilities(self, features):
        return self.classifier.predict_proba(features)

    def train(self, features, classes):
        self.classifier.fit(features, classes)
开发者ID:uf-mil,项目名称:software-common,代码行数:32,代码来源:color_classifier.py

示例6: trainData

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict_proba [as 别名]
def trainData(username):
	"""
	Trains the data based on the users performance so far
	Returns a trained Gaussian Naive Bayes model and updates result collection
	"""
	X = getFeatures(username)
	Y = getClassList(username)
	
	trainX = np.array(X)
	trainY = np.array(Y)

	gnb = GaussianNB()
	gnb.fit(trainX, trainY)
	print "Score with Naive Bayes: ", gnb.score(trainX, trainY)

	testData = words.posts.find({}, {'id' : 1,
									'points' : 1,
									'diff' : 1,
									'_id' : 0})
	testData = map(lambda x : (x['id'], x['points'], x['diff']), testData)

	with warnings.catch_warnings():
		warnings.simplefilter('ignore')
		for data in testData:
			testWord = words.posts.find_one({'id' : data[0]}, {'word' : 1, '_id' : 0})['word']
			wordClass = setWordClass(list(gnb.predict_proba(data))[0])
			classWord = result.posts.update({'username' : username}, {'$set' : {testWord : wordClass}}, upsert = True)
开发者ID:prathameshnetake,项目名称:BE_Project,代码行数:29,代码来源:NaiveBayes.py

示例7: naiveBayesClassifierTraining

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict_proba [as 别名]
def naiveBayesClassifierTraining(compounds_all):
    print "Building naive Bayes classifier (" + str(NB_FOLDS) + "-fold cross-validation)..."
    # get the data
    keys = compounds_all.keys()
    fingerprint_data = [compounds_all[cmpnd_id]['fingerprint'] for cmpnd_id in keys]
    fingerprint_data = numpy.asarray(fingerprint_data)
    activity_data = [compounds_all[cmpnd_id]['active'] for cmpnd_id in keys]
    activity_data = numpy.asarray(activity_data)

    # perform K-fold cross-validation
    classifier = GaussianNB()
    kfold_xv_strat = cross_validation.StratifiedKFold(activity_data, NB_FOLDS, indices=False)
    confusion_matrices = []
    probabilities = []
    scores = []
    models = []
    true_activities = []
    aucs = []
    for train, test in kfold_xv_strat:
        fingerprint_data_train = fingerprint_data[train]
        fingerprint_data_test = fingerprint_data[test]
        activity_data_train = activity_data[train]
        activity_data_test = activity_data[test]

        # model building
        classifier.fit(fingerprint_data_train, activity_data_train)

        # testing
        activity_data_predictions = classifier.predict(fingerprint_data_test)
        models.append(classifier)

        probability_estimates = classifier.predict_proba(fingerprint_data_test)
        probabilities.append(probability_estimates)

        scores.append(classifier.score(fingerprint_data_test, activity_data_test))

        activity_confusion_matrix = confusion_matrix(activity_data_test, activity_data_predictions)
        confusion_matrices.append(activity_confusion_matrix)

        true_activities.append(activity_data_test)

        # ROC curves
        fpr, tpr, thresholds = roc_curve(activity_data_test, probability_estimates[:, 1])
        aucs.append(auc(fpr, tpr))
    classifier.fit(fingerprint_data, activity_data)
    print "Done."
    return {
        'confusion_matrices' : confusion_matrices
        , 'probabilities' : probabilities
        , 'scores' : scores
        , 'models' : models
        , 'true_activity_data' : true_activities
        , 'AUCs' : aucs
        , 'fingerprint_data' : fingerprint_data
        , 'activity_data' : activity_data
        , 'final_model' : classifier
    }
开发者ID:martin-sicho,项目名称:data_mining_2014,代码行数:59,代码来源:classification.py

示例8: bayseFilter

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict_proba [as 别名]
def bayseFilter(X,y):
    clf = GaussianNB()
    clf.fit(X,y)
    bayseX = clf.predict_proba(X)
    t = np.ones(bayseX.shape[0])    
    for i in range(0,bayseX.shape[1]):
        t = t*bayseX[:,i]
        
    bayseXfilter = t
    return bayseXfilter
开发者ID:luxiaolei,项目名称:NewsPopularity,代码行数:12,代码来源:bayseFilter.py

示例9: __init__

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict_proba [as 别名]
class NaiveBayes:
    __theta = 0
    __sigma = 0

    def __init__(self):
        pass 
        #self.__new_data = 0

    def learning(self,x_data,y_data):
        self.rssi = np.loadtxt(x_data, delimiter=',')
        print(self.rssi)

        self.position = np.loadtxt(y_data, delimiter=',')
        print(self.position)

        self.gaussian_nb = GaussianNB()

        from sklearn.cross_validation import train_test_split
        rssi_train, rssi_test, position_train, position_test = train_test_split(self.rssi, self.position, random_state=0)

        self.gaussian_nb.fit(rssi_train,position_train)
        print("theta",self.gaussian_nb.theta_)
        print("sigma",self.gaussian_nb.sigma_)

        predicted = self.gaussian_nb.predict(rssi_test)

        print(metrics.accuracy_score(position_test, predicted))
    '''
    def set_params(self,theta,sigma):
        __theta = theta
        __sigma = sigma
        print __theta
        print __sigma
        '''

    def inference(self,r_data):
        self.predicted_class = self.gaussian_nb.predict(r_data)

        post_prob = self.gaussian_nb.predict_proba(r_data)
        log_prob = self.gaussian_nb.predict_log_proba(r_data)
        self.post_prob_float16 = post_prob.astype(np.float16)
        #E = 1*self.post_prob_float16[0][0]+2*self.post_prob_float16[0][1]+3*self.post_prob_float16[0][2]
        #var = (1*self.post_prob_float16[0][0]+4*self.post_prob_float16[0][1]+9*self.post_prob_float16[0][2])-E**2
        #print(self.post_prob_float16)
        #print(self.post_prob_float16[0])
        #print(var)
        print(self.predicted_class)
        #print(self.gaussian_nb.class_prior_)
        #print(log_prob)

        return self.predicted_class

    def output(self):
        output = graph.Graph()
        output.bar_graph(self.post_prob_float16[0])
开发者ID:KawachiShota,项目名称:position_estimation,代码行数:57,代码来源:inference.py

示例10: train_NB_model

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict_proba [as 别名]
def train_NB_model(trackset, training_set):
  useful_features = ['acousticness','danceability','instrumentalness','energy','speechiness','tempo','valence']
  X = training_set[useful_features]
  Y = training_set.status
  w = training_set.weight
  clf = GaussianNB()
  clf.fit(X, Y, sample_weight=w)
  predicts = pd.DataFrame(clf.predict_proba(trackset[useful_features]))
  predicts.columns = ['P_reject','P_accept']
  trackset.P_accept = predicts['P_accept'].values
  return trackset.sort_values(by=['P_accept'], ascending=False)
开发者ID:tomsyouruncle,项目名称:DJ_suggest,代码行数:13,代码来源:train_model.py

示例11: main

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict_proba [as 别名]
def main():
  train = p.read_table('../train.tsv').replace('?',0)
  # target = np.array(train)[:,-1]
  train['alchemy_category'] = train.groupby('alchemy_category').grouper.group_info[0]
  train['alchemy_category_score'] = train['alchemy_category_score'].astype(float)
  # train = np.array(train)[:,:-1]
  train = np.array(train)[:,3:]
  test = p.read_table('../test.tsv').replace('?',0)
  test['alchemy_category'] = test.groupby('alchemy_category').grouper.group_info[0]
  test['alchemy_category_score'] = test['alchemy_category_score'].astype(float)
  valid_index = list(np.array(test)[:,1])
  orig_test = np.array(test)[:,3:]
  test = train
  test = outlier(test,20)
  target = test[:,-1]
  test = test[:,:-1]
  print len(test)
  r = []
  r.append([0,0.000])
  for j in range(1,10):
    n = int((8.5*len(train))/10)
    X_train = test[:n]
    X_test = test[n:]
    y_train = target[:n]
    y_test = target[n:]
    # run the model
    #classifier = RandomForestClassifier(n_estimators=1000,verbose=0,n_jobs=20,min_samples_split=5,random_state=1034324)
    classifier = GaussianNB()
    classifier.fit(X_train, y_train)
    pred = classifier.predict_proba(X_test)
    fpr, tpr, thresholds = roc_curve(y_test,pred[:,1])
    roc_auc = auc(fpr, tpr)
    print("%d Area under the ROC curve : %f" %(i,roc_auc))
    r.append([j,roc_auc])
    plt.grid(True)
    #print r
    x = [i[0]*10 for i in r]
    y = [i[1]*100 for i in r]
    plt.plot(x,y,linewidth=3)
    plt.axis([0,100,0,100])
    plt.xlabel("training % data")
    plt.ylabel('Accuracy (CV score k=20)')
    plt.show()
  # gnb.fit(X_train, y_train)
  # pred = gnb.predict(X_test)
  # fpr, tpr, thresholds = roc_curve(y_test,pred)
  # roc_auc = auc(fpr, tpr)
  # print("Area under the ROC curve : %f" % roc_auc)

  # write
  writer = csv.writer(open("predictions", "w"), lineterminator="\n")
  rows = [x for x in zip(valid_index, classifier.predict(orig_test))]
  writer.writerow(("urlid","label"))
  writer.writerows(rows)
开发者ID:monisjaved,项目名称:Kaggle-Stumbleupon-Challenge,代码行数:56,代码来源:GBtrain.py

示例12: nbayes

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict_proba [as 别名]
def nbayes(source, target):
    """ Naive Bayes Classifier
    """
    source = SMOTE(source)
    clf = GaussianNB()
    features = source.columns[:-1]
    klass = source[source.columns[-1]]
    clf.fit(source[features], klass)
    preds = clf.predict(target[target.columns[:-1]])
    distr = clf.predict_proba(target[target.columns[:-1]])
    return preds, distr[:,1]
开发者ID:rahlk,项目名称:Bellwether,代码行数:13,代码来源:model.py

示例13: gNB

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict_proba [as 别名]
def gNB(train_data, train_labels, test, save_result=False):
    log_state('Use Gaussian Naive Bayes classifier')
    clf = GaussianNB()
    clf.fit(train_data, train_labels)
    predict_labels = clf.predict(test)
    predict_proba = clf.predict_proba(test)
    if save_result == True:
        dump_picle(predict_labels, './data/predict_labels/predict_labels.p')
        dump_picle(predict_proba, './data/predict_labels/predict_proba.p')
    logger.info('Classifier training complete, saved predict labels to pickle')
    return predict_labels
开发者ID:candlewill,项目名称:short_texts_sentiment_analysis,代码行数:13,代码来源:classifiers.py

示例14: naive_bayes_crossval_network

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict_proba [as 别名]
def naive_bayes_crossval_network(title):
    csv = pandas.read_csv("data/cables2009WithRefAttributes.csv", sep=";")
    X, Y = get_xy_from_csv2(csv)
    fold_size = len(Y)/10
    for fold in xrange(0, 10):
        if fold == 9:
            last = len(Y) - (fold + 1) * fold_size
        else:
            last = 0
        test = range(fold * fold_size, (fold + 1) * fold_size + last)
        train = list(set(range(len(Y))) - set(test))
        clf = GaussianNB()
        clf.fit(X[train, :], Y[train])
        if fold == 0:
            print "Naive bayes 10-fold crossval: 0",
            probs = clf.predict_proba(X[test, :])
        else:
            print fold,
            probs = np.concatenate([probs, clf.predict_proba(X[test, :])])
    print " "
    plot_ROC_of_graph(0, 0, True, Y, probs, title)
开发者ID:alekdimi,项目名称:cablegate,代码行数:23,代码来源:networkStatistics.py

示例15: naiveBayesModel

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict_proba [as 别名]
def naiveBayesModel(train_data, test_data, train_Y, test_Y):

    # Build Naive Bayes Model
    model = GaussianNB()
    model.fit(train_data, train_Y)
    # print(model)

    # Make predictions
    predicted = model.predict_proba(test_data)
    # print predicted[0:,1]
    print "Naive Bayes :"
    print 'Log Loss :', metrics.log_loss(test_Y, predicted[0:,1])
开发者ID:ssharm,项目名称:ctr,代码行数:14,代码来源:base_model.py


注:本文中的sklearn.naive_bayes.GaussianNB.predict_proba方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。