当前位置: 首页>>代码示例>>Python>>正文


Python GaussianNB.predict_log_proba方法代码示例

本文整理汇总了Python中sklearn.naive_bayes.GaussianNB.predict_log_proba方法的典型用法代码示例。如果您正苦于以下问题:Python GaussianNB.predict_log_proba方法的具体用法?Python GaussianNB.predict_log_proba怎么用?Python GaussianNB.predict_log_proba使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.naive_bayes.GaussianNB的用法示例。


在下文中一共展示了GaussianNB.predict_log_proba方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: nb_predict

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict_log_proba [as 别名]
def nb_predict(clf,Xtest,cc):
    # Classes returned in order 0,1
    #clf.classes_: array([0, 1])
    log0,log1 = GaussianNB.predict_log_proba(clf,Xtest)[0]
    log_odds = log1 - log0
    if log_odds > cc:
        return 1
    return 0
开发者ID:poldrack,项目名称:semantic-image-comparison,代码行数:10,代码来源:4.naive_bayes_decoding.py

示例2: __init__

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict_log_proba [as 别名]
class NaiveBayes:
    __theta = 0
    __sigma = 0

    def __init__(self):
        pass 
        #self.__new_data = 0

    def learning(self,x_data,y_data):
        self.rssi = np.loadtxt(x_data, delimiter=',')
        print(self.rssi)

        self.position = np.loadtxt(y_data, delimiter=',')
        print(self.position)

        self.gaussian_nb = GaussianNB()

        from sklearn.cross_validation import train_test_split
        rssi_train, rssi_test, position_train, position_test = train_test_split(self.rssi, self.position, random_state=0)

        self.gaussian_nb.fit(rssi_train,position_train)
        print("theta",self.gaussian_nb.theta_)
        print("sigma",self.gaussian_nb.sigma_)

        predicted = self.gaussian_nb.predict(rssi_test)

        print(metrics.accuracy_score(position_test, predicted))
    '''
    def set_params(self,theta,sigma):
        __theta = theta
        __sigma = sigma
        print __theta
        print __sigma
        '''

    def inference(self,r_data):
        self.predicted_class = self.gaussian_nb.predict(r_data)

        post_prob = self.gaussian_nb.predict_proba(r_data)
        log_prob = self.gaussian_nb.predict_log_proba(r_data)
        self.post_prob_float16 = post_prob.astype(np.float16)
        #E = 1*self.post_prob_float16[0][0]+2*self.post_prob_float16[0][1]+3*self.post_prob_float16[0][2]
        #var = (1*self.post_prob_float16[0][0]+4*self.post_prob_float16[0][1]+9*self.post_prob_float16[0][2])-E**2
        #print(self.post_prob_float16)
        #print(self.post_prob_float16[0])
        #print(var)
        print(self.predicted_class)
        #print(self.gaussian_nb.class_prior_)
        #print(log_prob)

        return self.predicted_class

    def output(self):
        output = graph.Graph()
        output.bar_graph(self.post_prob_float16[0])
开发者ID:KawachiShota,项目名称:position_estimation,代码行数:57,代码来源:inference.py

示例3: test_gnb

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict_log_proba [as 别名]
def test_gnb():
    """
    Gaussian Naive Bayes classification.

    This checks that GaussianNB implements fit and predict and returns
    correct values for a simple toy dataset.
    """

    clf = GaussianNB()
    y_pred = clf.fit(X, y).predict(X)
    assert_array_equal(y_pred, y)

    y_pred_proba = clf.predict_proba(X)
    y_pred_log_proba = clf.predict_log_proba(X)
    assert_array_almost_equal(np.log(y_pred_proba), y_pred_log_proba, 8)
开发者ID:Big-Data,项目名称:scikit-learn,代码行数:17,代码来源:test_naive_bayes.py

示例4: test_gnb

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict_log_proba [as 别名]
def test_gnb():
    # Gaussian Naive Bayes classification.
    # This checks that GaussianNB implements fit and predict and returns
    # correct values for a simple toy dataset.

    clf = GaussianNB()
    y_pred = clf.fit(X, y).predict(X)
    assert_array_equal(y_pred, y)

    y_pred_proba = clf.predict_proba(X)
    y_pred_log_proba = clf.predict_log_proba(X)
    assert_array_almost_equal(np.log(y_pred_proba), y_pred_log_proba, 8)

    # Test whether label mismatch between target y and classes raises
    # an Error
    # FIXME Remove this test once the more general partial_fit tests are merged
    assert_raises(ValueError, GaussianNB().partial_fit, X, y, classes=[0, 1])
开发者ID:daidan,项目名称:MLearning,代码行数:19,代码来源:test_naive_bayes.py

示例5: range

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict_log_proba [as 别名]
            for i in range(len(scans_testing)):
                prediction = nb.predict(scans_testing[i])
                if prediction == labels_testing[i]:
                    correct += 1
            #print (correct / len(scans_testing)) * 100, "%"
            total_correct += correct
            total_scans += len(scans_testing)
        else:
            # 6: Classify per group
            #print "Classifying using test data"
            correct = 0
            count = 0
            sum_p = 0
            sum_s = 0
            for i in range(len(scans_testing)):
                prediction = nb.predict_log_proba(scans_testing[i])
                sum_p += prediction[0][0]
                sum_s += prediction[0][1]

                if i % 10 == 9:
                    group_prediction = 'P' if sum_p > sum_s else 'S'
                    sum_p = 0
                    sum_s = 0
                    count += 1
                    if group_prediction == labels_testing[i]:
                        correct += 1

            #print (correct / count) * 100, "%"
            total_correct += correct
            total_scans += count
开发者ID:spirosikmd,项目名称:kimml09,代码行数:32,代码来源:pca_all_subs_by_index.py

示例6: GaussianNB

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict_log_proba [as 别名]
                                                                 n_samples)
y = np.zeros(3 * n_samples,)
y[n_samples:2 * n_samples] = 1
y[2 * n_samples:3 * n_samples, ] = 2


# Gaussain Naiv Bais

clf = GaussianNB()
clf.fit(X, y)

display_1 = [2, 2]
display_2 = [3, 1]
display_3 = [2.5, 2.5]

values_proba_gnb_1 = np.exp(clf.predict_log_proba(display_1))[0]
values_proba_gnb_2 = np.exp(clf.predict_log_proba(display_2))[0]
values_proba_gnb_3 = np.exp(clf.predict_log_proba(display_3))[0]

ig1_bis = plt.figure()
plot_2d(X, y)

resolution_param = 50  # 500 for nice plotting, 50 for fast version
color_text = '#ff8101'

frontiere(lambda xx: clf.predict(xx), X, step=resolution_param)
plt.annotate(r'' + '(%.2f' % values_proba_gnb_1[0] + ', %.2f'
             % values_proba_gnb_1[1] + ', %.2f)' % values_proba_gnb_1[2],
             xy=(display_1[0], display_1[1]), xycoords='data',
             color =color_text, xytext=(-150, +100),
             textcoords='offset points', fontsize=12,
开发者ID:Banaei,项目名称:ces-ds,代码行数:33,代码来源:gaussianNB.py

示例7: GaussianNB

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict_log_proba [as 别名]
import numpy as np
X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
Y = np.array([1, 1, 1, 2, 2, 2])
from sklearn.naive_bayes import GaussianNB
clf = GaussianNB()

clf.fit(X, Y)
print "==Predict result by predict=="
print(clf.predict([[-0.8, -1]]))
print "==Predict result by predict_proba=="
print(clf.predict_proba([[-0.8, -1]]))
print "==Predict result by predict_log_proba=="
print(clf.predict_log_proba([[-0.8, -1]]))
开发者ID:shunliz,项目名称:mltest,代码行数:15,代码来源:simplebayes.py

示例8: GaussianNB

# 需要导入模块: from sklearn.naive_bayes import GaussianNB [as 别名]
# 或者: from sklearn.naive_bayes.GaussianNB import predict_log_proba [as 别名]
import numpy
from sklearn.naive_bayes import GaussianNB

__author__ = 'mkk'

if __name__ == "__main__":
    nb = GaussianNB()
    ctx1 = numpy.array([1,2,3,4,5,6,7,8,9,100])
    ctx2 = numpy.array([1,2,3,4,5,16,7,18,9,100])
    obs = numpy.array([0.1,5,5,5,5,15,5,15,5,115])

    nb.fit(numpy.array([ctx1, ctx2]), [1,2])
    print(nb.predict_log_proba(obs))
开发者ID:mkdmkk,项目名称:infaas,代码行数:15,代码来源:__init__.py


注:本文中的sklearn.naive_bayes.GaussianNB.predict_log_proba方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。